\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Moyal deformation quantization} [[!redirects Moyal quantization]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{integral_representation}{Integral representation}\dotfill \pageref*{integral_representation} \linebreak \noindent\hyperlink{ViaGeometricQuantization}{Via geometric quantization}\dotfill \pageref*{ViaGeometricQuantization} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Moyal product} is a [[formal deformation quantization]] of a linear [[Poisson manifold]], hence of a [[vector space]] $V$ equipped with a [[Poisson bivector]] $\pi \in V \wedge V$, regarded as a constant (translation invariant) [[tensor field|bivector field]]. Moyal quantization serves as an intermediate step in quantization of more general situations: Given a [[symplectic manifold]], then Moyal quantization applies in each [[fiber]] of the [[tangent bundle]]. The resulting [[fiber bundle]] of Moyal algebras admits a [[flat connection]] (non-uniquely) compatible with the algebra structure. The [[covariantly constant sections]] of this Moyal-algebra bundle constitute a [[formal deformation quantization]] of the symplectic manifold, see at \emph{[[Fedosov's deformation quantization]]}. With a little care, the Moyal construction applies also to infinite-dimensional Poisson vector spaces such as appear in [[local field theory]]. Here the Moyal quantization yields [[formal deformation quantization]] of [[free field theories]] to [[perturbative quantum field theories]], the result are the \emph{[[Wick algebras]]} of free field theory (\hyperlink{Dito90}{Dito 90}, \hyperlink{DutschFredenhagen01}{D\"u{}tsch-Fredenhagen 01}). Combining this this with [[Fedosov's deformation quantization]] as above yields [[interaction|interacting]] [[perturbative quantum field theories]] as constructed via [[causal perturbation theory]] (\hyperlink{Collini16}{Collini 16}), see at \emph{[[locally covariant perturbative quantum field theory]]} for more on this. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The Moyal [[star product]] on [[smooth functions]] $C^\infty(V)$ is given on $f,g \in C^\infty(V)$ by \begin{displaymath} f \star g \coloneqq prod \circ \exp(\hbar \pi)(f , g) \,, \end{displaymath} where in the exponent we regard $\pi$ as an [[endomorphism]] on the [[tensor product]] $C^\infty(V) \otimes C^\infty(V)$ by [[differentiation]] in each argument, where the [[exponential]] denotes the corresponding [[formal power series]] of iterated applications of this endomorphism, and where $prod \colon C^\infty(V) \otimes C^\infty(V) \to C^\infty(V)$ is the usual pointwise product of functions. This means that given a choice of [[basis]] $\{x^i\}_i$ of $V$ such that $\pi$ has components $\{\pi^{i j}\}_{i j}$ in this basis, the resulting [[formal power series]] in the formal parameter $\hbar$ (``[[Planck's constant]]'') starts out as \begin{displaymath} (f \star g) = f \cdot g + \hbar \sum_{i,j} \pi^{i j} \frac{\partial f}{\partial x^i}\cdot \frac{\partial g}{\partial x^j} + \frac{1}{2} \hbar^2 \sum_{i,j,k, l} \pi^{k l} \pi^{i j} \frac{\partial^2 f}{\partial x^k\partial x^i}\cdot \frac{\partial^2 g}{\partial x^k \partial x^j} + \cdots \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{integral_representation}{}\subsubsection*{{Integral representation}}\label{integral_representation} \begin{prop} \label{IntegralRepresentationOfStarProduct}\hypertarget{IntegralRepresentationOfStarProduct}{} \textbf{([[integral]] representation of [[star product]])} If the functions $f,g$ admit [[Fourier analysis]] (are [[functions with rapidly decreasing partial derivatives]]), then their [[star product]] is equivalently given by the following [[integral]] expression: \begin{displaymath} \begin{aligned} \left(f \star_\omega g\right)(x) &= \frac{(det(\omega)^{2n})}{(2 \pi \hbar)^{2n} } \int e^{ - \tfrac{1}{i \hbar} \omega((x - \tilde y),(x-y))} f(y) g(\tilde y) \, d^{2 n} y \, d^{2 n} \tilde y \end{aligned} \end{displaymath} \end{prop} (\hyperlink{Baker58}{Baker 58}, see at \emph{[[star product]]} \href{star+product#IntegralRepresentationOfStarProduct}{this prop}). \hypertarget{ViaGeometricQuantization}{}\subsubsection*{{Via geometric quantization}}\label{ViaGeometricQuantization} The Moyal quantization of a Poisson vector space $(V,\pi)$ arises equivalently as the canonical [[geometric quantization of symplectic groupoids]] of the [[symplectic groupoid]] which is the [[Lie integration]] of the corresponding [[Poisson Lie algebroid]] (\hyperlink{Weinstein91}{Weinstein 91, p. 446}, \hyperlink{GBV}{Garcia-Bondia \& Varilly 94, section V}, \hyperlink{EH}{Hawkins 06}). See at \emph{[[star product]]} \href{star+product#PolarizedSymplecticGroupoidConvolutionProductOfSymplecticVectorSpaceIsMoyalStarProduct}{this prop.} for the \textbf{proof}; and see at \emph{\href{geometric+quantization+of+symplectic+groupoids#MoyalQuantizationofPoissonVectorSpace}{geometric quantization of symplectic groupoids -- Examples -- Moyal quantization}} for more. \hypertarget{References}{}\subsection*{{References}}\label{References} The Moyal product was introduced independently in \begin{itemize}% \item [[Hilbrand Groenewold]], \emph{On the Principles of elementary quantum mechanics}, Physica,12 (1946) pp. 405-460. \item [[José Moyal]], \emph{Quantum mechanics as a statistical theory}. Mathematical Proceedings of the Cambridge Philosophical Society 45: 99 (1949) \end{itemize} The integral expression (prop. \ref{IntegralRepresentationOfStarProduct}) is apparently due to \begin{itemize}% \item George A. Baker, \emph{Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space}, Jr. Phys. Rev. 109, 2198 – Published 15 March 1958 (\href{https://doi.org/10.1103/PhysRev.109.2198}{doi:10.1103/PhysRev.109.2198}) \end{itemize} General accounts include \begin{itemize}% \item D. B. Fairlie, \emph{Moyal Brackets, Star Products and the Generalised Wigner Function} (\href{https://arxiv.org/abs/hep-th/9806198}{arXiv:hep-th/9806198}) \item Maciej Blaszak, Ziemowit Domanski, \emph{Maciej Blaszak, Ziemowit Domanski} (\href{https://arxiv.org/abs/1009.0150}{arXiv:1009.0150}) \end{itemize} The understanding of the Moyal product as the [[polarization|polarized]] [[groupoid convolution algebra]] of the corresponding [[symplectic groupoid]], hence as an example of [[geometric quantization of symplectic groupoids]] had been suggested without proof in \begin{itemize}% \item [[Alan Weinstein]], p. 446 in P. Donato et al. (eds.) \emph{Symplectic Geometry and Mathematical Physics, (Birkh\"a{}user, Basel, 1991);} \end{itemize} and was proven in detail in \begin{itemize}% \item [[José Gracia-Bondia]], [[Joseph Varilly]], \emph{From geometric quantization to Moyal quantization}, J. Math. Phys. 36 (1995) 2691-2701 (\href{http://arxiv.org/abs/hep-th/9406170}{arXiv:hep-th/9406170}) \end{itemize} In a broader context this was reconsidered in \begin{itemize}% \item [[Eli Hawkins]], example 6.2 of \emph{A groupoid approach to quantization}, J. Symplectic Geom. Volume 6, Number 1 (2008), 61-125. (\href{http://arxiv.org/abs/math.SG/0612363}{arXiv:math.SG/0612363}) \end{itemize} The observation that Moyal deformation quantization applied to the [[Peierls-Poisson bracket]] yields the [[Wick algebra]] quantization of [[free field theories]] is due to \begin{itemize}% \item J. Dito, \emph{Star-product approach to quantum field theory: The free scalar field}. Letters in Mathematical Physics, 20(2):125--134, 1990 (\href{https://inspirehep.net/record/303898/}{spire}) \end{itemize} and was amplified in the broader context of [[perturbative AQFT]] in \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative algebraic field theory, and deformation quantization}, in [[Roberto Longo]] (ed.), \emph{Mathematical Physics in Mathematics and Physics, Quantum and Operator Algebraic Aspects}, volume 30 of Fields Institute Communications, pages 151--160. American Mathematical Society, 2001 \end{itemize} That moreover the corresponding [[Fedosov deformation quantization]] based on this free field theory star product yields the [[causal perturbation theory]] quantization of interacting field theories is due to \begin{itemize}% \item [[Giovanni Collini]], \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \end{itemize} [[!redirects Moyal product]] [[!redirects Moyal products]] [[!redirects Moyal star-product]] [[!redirects Moyal star-products]] [[!redirects Moyal star product]] [[!redirects Moyal star products]] [[!redirects Moyal \emph{-product]] [[!redirects Moyal}-products]] [[!redirects Moyal star]] [[!redirects Moyal deformation quantization]] \end{document}