\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Myers-Steenrod theorem} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{geodesic_preservation}{Geodesic preservation}\dotfill \pageref*{geodesic_preservation} \linebreak \noindent\hyperlink{exponential_coordinates}{Exponential coordinates}\dotfill \pageref*{exponential_coordinates} \linebreak \noindent\hyperlink{_is_an_isometry}{$\tilde{\phi}$ is an isometry}\dotfill \pageref*{_is_an_isometry} \linebreak \noindent\hyperlink{conclusion_of_the_proof}{Conclusion of the proof}\dotfill \pageref*{conclusion_of_the_proof} \linebreak \noindent\hyperlink{a_lemma}{A lemma}\dotfill \pageref*{a_lemma} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Recall that an [[isometry]] between two [[Riemannian manifolds]] $(M,g), (N,h)$ is a [[diffeomorphism]] $\phi: M \to N$ such that $\phi^* h = g$. In other words, $\phi$ respects the Riemannian structure as well as the differentiable structure. It follows that if $d,d'$ are the metrics on $M,N$ induced by the Riemannian metrics $g,h$, then $d'(\phi(x),\phi(y)) = d(x,y)$ for $x,y \in M$---that is, $\phi$ is distance-preserving. Interestingly, a version of the converse is true, according to the Myers--Steenrod theorem: \begin{utheorem} If $\phi: M \to N$ is distance-preserving and surjective, then it is an [[isometry]] (in particular, it is smooth). \end{utheorem} For notational simplicity, assume $N=M$. $\phi$ is evidently a homeomorphism. Now pick $p \in M$ and a neighborhood $D_r(p)$ such that for any $q \in D_r(p)$, there is a unique geodesic in that neighborhood connecting $p,q$. Call it $\gamma$. I claim that $\phi \circ \gamma$ is a geodesic in $N$. The [[geodesic]] $\gamma$ can be assumed to be parametrized by unit length. We have for all $t$, \begin{displaymath} d(p,q) = d(\gamma(t),p) + d(\gamma(t), q). \end{displaymath} Thus \begin{equation} d(\phi(p),\phi(q)) = d(\phi(\gamma(t)),\phi(p)) + d(\phi(\gamma(t)), \phi(q)) . \label{streq}\end{equation} In other words, we have strict equality in the triangle inequality. \hypertarget{geodesic_preservation}{}\subsection*{{Geodesic preservation}}\label{geodesic_preservation} In a Riemannian manifold $M$, if $q,r$ lie in a small neighborhood of $p$ and \begin{displaymath} d(q,r) + d(r,p) = d(q,p) , \end{displaymath} then $r$ lies on a geodesic betwen $p,q$.\newline Indeed, draw a geodesic $\alpha$ from $q$ to $r$ and a geodesic $\beta$ from $r$ to $p$ that travel at unit speed and minimze the distances; we can do this locally even without the assumption of completeness. The catenation $\alpha \beta$ minimizes the length from $q$ to $p$, so it is an unbroken geodesic. Thus $r$ lies on the geodesic. So, returning to the discussion above, we see that by \eqref{streq} $\phi$ \emph{sends geodesics to geodesics}. \hypertarget{exponential_coordinates}{}\subsection*{{Exponential coordinates}}\label{exponential_coordinates} Now fix open $U \subset T_p(M),V \subset T_q(N)$ containing the origin such that $\exp_p$ takes $U$ diffeomorphically to a neighborhood $D_r(p)$, and $\exp_q$ takes $V$ diffeomorphically to $D_r(q)$. There is an expression for $\phi$ as a map $\tilde{\phi}: U \to V$ in these exponential coordinates.\newline It is obtained as follows: if $v \in U$, take a geodesic $\gamma_v$ with $\gamma_v'(0) = v$ and consider $(\phi \circ \gamma_v)'(0)$. In fact this induces more generally a map \begin{displaymath} \tilde{\phi}: T_p(M) \to T_q(M). \end{displaymath} Since $\gamma_v$ moves at constant speed $|v|$ and $\phi \circ \gamma_v$ moves at the same speed, it follows that $\tilde{\phi}$ is norm-preserving. Also $\tilde{\phi}(0) = 0$. If we can show that $\tilde{\phi}$ is linear, then we'll get smoothness in this exponential coordinate system---hence smoothness in general. \hypertarget{_is_an_isometry}{}\subsection*{{$\tilde{\phi}$ is an isometry}}\label{_is_an_isometry} It can be checked that \begin{displaymath} \boxed{\lim_{A,B \to 0 \in T_p(M)} \frac{d(\exp_p(A),\exp_p(B)) }{|A-B|} } = 1. \end{displaymath} We will postpone this for now. This is what we will use to show that $\tilde{\phi}: T_p(M) \to T_q(M)$ is an isometry, where each tangent space is given the norm from the Riemannian metric. Pick $A,B \in T_p(M)$ and consider the geodesics $\gamma_{A},\gamma_{B}$ at $p$ and $\gamma_{A'}, \gamma_{B'}$ where $A'=\tilde{\phi}(A), B' = \tilde{\phi}(B)$. Then $d(\gamma_{A}(t), \gamma_{B}(t)) = d( \gamma_{A'}(t), \gamma_{B'}(t))$. So \begin{displaymath} 1= \lim_{t \to 0} \frac{d(\exp_p(t A),\exp_p(t B)) }{t|A-B|} = \lim_{t \to 0} \frac{d(\exp_q(t A'),\exp_q(t B')) }{t|A-B|} = \frac{|A'-B'|}{|A-B|}. \end{displaymath} To show that $\tilde{\phi}$ is linear, we appeal to a general fact: Let $X,Y$ be normed linear spaces and $T: X \to Y$ a map such that $|Tx - Tx'| = |x-x'|$ for $x,x' \in X$. Then $T$ is linear if $T(0) = 0$. \hypertarget{conclusion_of_the_proof}{}\subsection*{{Conclusion of the proof}}\label{conclusion_of_the_proof} Now we have seen that $\phi$ is smooth, and that for $v \in T_p(M)$, $|v|_p = |\phi_*(v)|_{\phi(p)}$, i.e. $\phi$ preserves lengths on tangent vectors. By the polarization identity, $\phi$ preserves the inner product, and is thus an isometry. \hypertarget{a_lemma}{}\subsection*{{A lemma}}\label{a_lemma} We never proved a fact about the exponential map---the equality \begin{displaymath} \lim_{A,B \to 0 \in T_p(M)} \frac{d(\exp_p(A),\exp_p(B)) }{|A-B|} = 1. \end{displaymath} We will briefly sketch the idea here. $|A-B|$ is the length of the linear path from $A$ to $B$ in $T_p(M)$, so it will be sufficient to show: \begin{ulemma} If $c:(0,1) \to T_p(M)$ is a path in $T_p(M)$, then as $c((0,1)) \to 0$ with the derivative $|c'|$ staying bounded, \begin{displaymath} \frac{ l(\exp_p(c))}{l(c)} = 1. \end{displaymath} \end{ulemma} We are abusing notation quite a bit here, but it should not cause confusion. The reason is that \begin{displaymath} l(c) = \int |c'| \end{displaymath} while \begin{displaymath} l(\exp_p(c)) = \int | (\exp_p)_{*c(t)} c'(t) |_{\exp_p(c(t))} \end{displaymath} where in the second equation we are referring to the norms induced by the metric on the various tangent spaces of $M$. The difference between these two is $o(l(c))$, because $\exp_p$ has derivative the identity at $0 \in T_p(M)$, and the metric on $T_{\exp_p(c(t))}(M)$ is very close (say by a factor of $1 \pm \epsilon$) to that of $T_p(M)$ if we work in local coordinates and agree to identify the tangent spaces. [[!redirects Myers–Steenrod theorem]] [[!redirects Myers--Steenrod theorem]] \end{document}