\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Nikolai Durov} \textbf{Nikolai Durov} ( ) is a Russian mathematician from St. Petersburg with main current interests in [[arithmetic geometry]], currently employed at St. Petersburg Department of the Steklov Institute of Mathematics. \begin{itemize}% \item \href{http://www.pdmi.ras.ru/eng/perso/durov.php}{homepage} at Steklov \item \href{http://www.mathnet.ru/php/person.phtml?&personid=34084&option_lang=eng}{mathnet.ru} entry \item wikipedia: \href{http://en.wikipedia.org/wiki/Nikolai_Durov}{Nikolai Durov} \end{itemize} Durov obtained his Ph.D. in 2007 in Bonn under \href{http://en.wikipedia.org/wiki/Gerd_Faltings}{Gerd Faltings}: \begin{itemize}% \item \emph{New approach to Arakelov geometry}, \href{http://arxiv.org/abs/0704.2030}{arxiv/0704.2030} \end{itemize} Durov's mathematical work preceding his study in Bonn includes his work on classical [[Galois theory]] of polynomial equations; it provides essentially the third historically available method to compute algorithmically a Galois group of a given equation. His method is however statistical and some random data are included in input. The algorithm terminates with probability $1$ for all equations iff the [[Riemann hypothesis]] is true. The exposition of these results is in \begin{itemize}% \item N. V. Durov, \emph{Computation of the Galois group of a polynomial with rational coefficients. I.} (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), Vopr.Teor. Predst. Algebr. i Grupp. 11, 117--198, 301; English translation in J. Math. Sci. (N. Y.) 134 (2006), no. 6, 2511--2548 (MR2006b:12006) \item N. V. Durov, \emph{Computation of the Galois group of a polynomial with rational coefficients. II.} (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 321 (2005), Vopr. Teor. Predst. Algebr. i Grupp. 12, 90--135, 298; English translation in J. Math. Sci. (N. Y.) 136 (2006), no. 3, 3880--3907 (MR2006e:12004) \end{itemize} Nikolai Durov is also an experienced computer programmer. He was a member of a St Petersburg State University student team winning a student \href{http://www.cs.northwestern.edu/~agupta/_projects/acm_ibm/acm2001.htm}{world tournament} in programming. His high school education was in Italy. His younger brother \href{http://durov.vkontakte.ru}{Pavel V. Durov} is a professional programmer and main constructor behind \href{http://Vkontakte.ru}{one of the most popular internet sites} in Russia. The company is not any more in their control. Nikolai and Pavel together established communication platform and company \href{https://telegram.org}{Telegram} (see \href{https://telegram.org/faq}{FAQ} and \href{https://en.wikipedia.org/wiki/Telegram_(messaging_service}{wikipedia}) where they work on Nikolai's envisioned [[zoranskoda:Telegram Open Network]] (TON) which he classifies as a 5th generation [[blockchain]] project enhanced with additional DNS, proxy and (torrent-like) storage infrastructure. \begin{itemize}% \item TON whitepaper, 23 page \href{https://cdn.crowdfundinsider.com/wp-content/uploads/2018/03/TON-White-Paper-Telegram-ICO.pdf}{pdf}, mirrors \href{https://drive.google.com/file/d/1ucUeKg_NiR8RxNAonb8Q55jZha03WC0O/view}{pdf} \href{https://icorating.com/upload/whitepaper/gNQ7e9z3lCGi519Wz8mmC0Kg8aA0goeZKAQ802vo.pdf}{pdf} \item Nikolai Durov, \emph{Telegram Open Network}, technical overview, Dec 2017, 132 pp. \href{https://toncoin.tech/TON-official-whitepaper.pdf}{pdf}, mirror \href{https://www.kriptovaluta.hr/wp-content/uploads/2018/03/TON-Technology.pdf}{pdf}; \emph{Telegram Open Network Blockchain}, Sep 2018, 121 pp. \href{https://www.docdroid.net/qY4sQEv/telegram-open-network-blockchain-september-5-2018.pdf}{pdf}; \emph{Telegram Open Network Virtual Machine}, Sep. 2018, 148 pp. \href{https://www.docdroid.net/R3vEKBY/telegram-open-network-virtual-machine-september-5-2018.pdf}{pdf}; \emph{Fift: a brief introduction} (about his new Forth-like stack based programming language on TON), May 23, 2019, 87 pp. pdf is at channel \href{https://t.me/Tgram/170}{t.me/Tgram/170} \end{itemize} The technical overview sporadically uses the notation from [[type theory]]. Durov's earlier publications also include \begin{itemize}% \item N. Durov, S. Meljanac, A. Samsarov, [[Z. Škoda]], \emph{A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra}, Journal of Algebra 309, n. 1, 318--359 (2007) (\href{http://dx.doi.org/10.1016/j.jalgebra.2006.08.025}{doi:jalgebra}) (\href{http://front.math.ucdavis.edu/math.RT/0604096}{math.RT/0604096}). \end{itemize} where in chapters 7--9 Durov presented a flexible theory of a class of functors which can be viewed as representing generalizations of \href{http://en.wikipedia.org/wiki/Formal_scheme}{formal schemes} but over an arbitrary ring, and with weaker assumptions. This theory is then applied to a problem in Lie theory and deformation theory; an interesting chapter on symplectic Weyl algebras is included. In chapter 10 an alternative method using [[Hopf algebras]] rather than geometry is presented. Recently he introduced the notion of a [[vectoid]] and the related notion of an [[algebrad]] which is a generalization of the notions of a symmetric and a non-symmetric operad: \begin{itemize}% \item Nikolai Durov, \emph{Classifying vectoids and generalisations of operads}, \href{http://arxiv.org/abs/1105.3114}{arxiv/1105.3114}, the translation of `` '', Trudy MIAN, vol. 273 \item \emph{Classifying vectoids and generalizations of operads}, talk at The International Conference ``Contemporary Mathematics'' June 12, 2009, video: \href{http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=345}{link} \end{itemize} Other sources: \begin{itemize}% \item \emph{Computation of derived absolute tensor square of the ring of integers}, talk at 2nd annual conference-meeting MIAN--POMI ``Algebra and Algebraic Geometry'', St. Petersburg, December 25, 2008, \href{http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=267}{link} \item \emph{Arithmetic intersection theory and homotopical algebra}, seminar 2007 \item N. V. Durov, \emph{ (Topological realizations of algebraic varieties)}, preprint POMI 13/2012 (in Russian) \href{http://www.pdmi.ras.ru/preprint/2012/12-13.html}{abstract}, \href{ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/2012/13-12_rus.pdf.gz}{pdf.gz} \item N. V. Durov, \emph{ ${\mathbb{F}}_p$- }, (Multiplicative monoids of ${\mathbb{F}}_p$-algebras and absolute tensor products of finite fields), preprint POMI 12/2012 (in Russian) \href{http://www.pdmi.ras.ru/preprint/2012/12-12.html}{abstract} \href{ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/2012/12-12_rus.pdf.gz}{pdf.gz} \item N. V. Durov, \emph{Homotopy theory of normed sets I. Basic constructions}, Algebra i Analiz, 29:6 (2017), 35–98 \href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1562&option_lang=eng}{mathnet.ru}; \emph{Homotopy theory of normed sets II. Model categories}, Algebra i Analiz, 30:1 (2018) 32–95 \href{http://mi.mathnet.ru/eng/aa1571}{mathnet.ru} \end{itemize} His paper on normed sets above (part 1 out of 3) is partly extending ideas from \begin{itemize}% \item [[Frederic Paugam]], \emph{Overconvergent global analytic geometry}, 2015, \href{https://arxiv.org/abs/1410.7971}{arXiv:1410.7971v2} \end{itemize} [[!redirects Nikolai Durov]] [[!redirects Николай Дуров]] [[!redirects Николай Валерьевич Дуров]] \end{document}