\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Nisnevich site} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_nonnoetherian_schemes}{For non-Noetherian schemes}\dotfill \pageref*{for_nonnoetherian_schemes} \linebreak \noindent\hyperlink{as_an_excision_property}{As an excision property}\dotfill \pageref*{as_an_excision_property} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_dimension}{Homotopy dimension}\dotfill \pageref*{homotopy_dimension} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Nisnevich topology} is a certain [[Grothendieck topology]] on the [[category]] of [[scheme]]s which is finer than the [[Zariski topology]] but coarser than the [[étale topology]]. It retains many desirable properties from both topologies: \begin{itemize}% \item The Nisnevich [[cohomological dimension]] (and even the [[homotopy dimension]]) of a scheme is bounded by its [[Krull dimension]] (like Zariski) \item [[field|Fields]] have [[shape of an (∞,1)-topos|trivial shape]] for the Nisnevich topology (like Zariski) \item [[algebraic K-theory|Algebraic K-theory]] satisfies [[descent]] over the Nisnevich site -- as is true for the [[Zariski site]] but not in full generality for the [[etale site]], see at \emph{\href{algebraic%20K-theory#Descent}{algebraic K-theory -- Descent}} for more; \item For $Z\subset X$ a [[closed subscheme|closed immersion]] between affine schemes that are smooth over a base $S$, the Nisnevich sheaf $X/(X-Z)$ is isomorphic to $N_{X,Z}/(N_{X,Z}-Z)$, where $N_{X,Z}$ is the normal bundle of $Z$ in $X$ (like \'e{}tale) \item Pushforward along a [[finite morphism]] is an [[exact functor]] on Nisnevich sheaves of abelian groups (like \'e{}tale) \item Nisnevich cohomology can be computed using [[?ech cohomology]] (like \'e{}tale) \end{itemize} The Nisnevich topology plays a central r\^o{}le in [[motivic homotopy theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An family of morphisms of [[Noetherian scheme]]s $\{p_i:V_i\to U\}$ is a \textbf{Nisnevich cover} if each $p_i$ is an [[étale map]] and if every field-valued point $Spec k\to U$ lifts to one of the $V_i$. This is a [[pretopology]] on the category of Noetherian schemes, and the associated topology is the \textbf{Nisnevich topology}. The \textbf{Nisnevich site} over a [[Noetherian scheme]] $S$ usually refers to the [[site]] given by the [[category]] of [[smooth scheme]]s of finite type over $S$ equipped with the Nisnevich topology. The \textbf{small Nisnevich site} of $S$ is the subsite consisting of [[étale map|étale]] $S$-schemes. \hypertarget{for_nonnoetherian_schemes}{}\subsubsection*{{For non-Noetherian schemes}}\label{for_nonnoetherian_schemes} For a general [[affine scheme]] $X$, one defines a [[sieve]] $S$ on $X$ to be a covering sieve for the Nisnevich topology if there exist a Noetherian affine scheme $Y$, a morphism $f: X\to Y$, and a Nisnevich covering sieve $T$ on $Y$ such that $f^\ast(T)\subset S$. On an arbitrary [[scheme]] $X$, a sieve $S$ is a Nisnevich covering sieve if there exists an open cover $\{U_i\to X\}$ by affine schemes such that $S_{/U_i}$ is a Nisnevich covering sieve on $U_i$ for all $i$. \hypertarget{as_an_excision_property}{}\subsubsection*{{As an excision property}}\label{as_an_excision_property} Let $Et/S$ be the category of [[étale scheme]]s of [[morphism of finite presentation|finite presentation]] over a [[quasi-compact morphism|quasi-compact]] [[quasi-separated morphism|quasi-separated]] scheme $S$. An [[(∞,1)-presheaf]] $F$ on $Et/S$ is said to satisfy \emph{Nisnevich excision} if the following conditions hold: \begin{itemize}% \item $F(\emptyset)$ is [[contractible]]. \item If $Z$ is a closed subscheme of $X\in Et/S$ and if $X'\to X$ is a morphism in $Et/S$ which is an isomorphism over $Z$, then the square \end{itemize} \begin{displaymath} \itexarray{ F(X) &\to& F(X-Z) \\ \downarrow && \downarrow \\ F(X') &\to& F(X'-Z) } \end{displaymath} is an [[(∞,1)-pullback]] square. Intuitively, this says that the space of sections of $F$ over $X$ with support in $Z$ (i.e., the [[homotopy fiber]] of $F(X) \to F(X-Z)$) does not depend on $X$. This is Definition 2.5 in \hyperlink{DAGXI}{DAG XI}. \begin{prop} \label{}\hypertarget{}{} An [[(∞,1)-presheaf]] on $Et/S$ is an [[(∞,1)-sheaf]] for the Nisnevich topology if and only if it satisifes Nisnevich excision. \end{prop} This is \hyperlink{MV99}{Morel-Voevosky, Prop. 1.16} or \hyperlink{DAGXI}{DAG XI, Thm. 2.9}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{homotopy_dimension}{}\subsubsection*{{Homotopy dimension}}\label{homotopy_dimension} \begin{prop} \label{}\hypertarget{}{} If $S$ is a [[Noetherian scheme]] of finite [[Krull dimension]], then the [[(∞,1)-topos]] of [[(∞,1)-sheaves]] on the small Nisnevich site of $S$ has [[homotopy dimension]] $\leq\dim(S)$. \end{prop} This is \hyperlink{DAGXI}{DAG XI, Theorem 2.24}. As a consequence, [[Postnikov tower]]s are convergent in the [[(∞,1)-topos]] of [[(∞,1)-sheaves]] on the Nisnevich site over $S$, and in particular that (∞,1)-topos is [[hypercomplete]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[fpqc-site]] $\to$ [[fppf-site]] $\to$ [[syntomic site]] $\to$ [[étale site]] $\to$ \textbf{Nisnevich site} $\to$ [[Zariski site]] \item [[cd-structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A quick overview is at the beginning of the talk slides \begin{itemize}% \item Jardine, \emph{Motivic spaces and the motivic stable category} (\href{http://www.aimath.org/WWN/motivesdessins/motivic.pdf}{pdf}) . \end{itemize} A detailed discussion is in \href{http://www.math.uiuc.edu/K-theory/0305/nowmovo.pdf#page=61}{section 3.1.1} of \begin{itemize}% \item [[Fabien Morel]], [[Vladimir Voevodsky]], \emph{$\mathbb{A}^1$-homotopy theory of schemes} , K-theory, 0305 (\href{http://www.math.uiuc.edu/K-theory/0305/}{web} \href{http://www.math.uiuc.edu/K-theory/0305/nowmovo.pdf}{pdf}) \end{itemize} or in the lecture notes \begin{itemize}% \item [[Eric Friedlander]], \emph{\href{http://www.math.northwestern.edu/~eric/lectures/}{Algebraic Cycles and algebraic K-theory, II}} (\href{http://www.math.northwestern.edu/~eric/lectures/ihp/ihplec6.pdf}{lecture 6 (pdf)}) \end{itemize} A self-contained account of the Nisnevich $(\infty,1)$-topos including the non-Noetherian case is in \begin{itemize}% \item [[Jacob Lurie]], \emph{Derived Algebraic Geometry XI: Descent Theorems} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-XI.pdf}{pdf}) \end{itemize} [[!redirects Nisnevich topology]] [[!redirects Nisnevich topos]] [[!redirects Nisnevich (∞,1)-topos]] [[!redirects Nisnevich sheaf]] [[!redirects Nisnevich sheaves]] [[!redirects Nisnevich descent]] \end{document}