\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Oberwolfach Workshop, June 2009 -- Friday, June 12} Talk notes for the session of \begin{itemize}% \item Friday June 12 \end{itemize} of \begin{itemize}% \item [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology]]. \end{itemize} \hypertarget{corbett_redden_string_structures_and_3forms}{}\subsection*{{Corbett Redden: String structures and 3-forms}}\label{corbett_redden_string_structures_and_3forms} \begin{itemize}% \item notational conventions \begin{itemize}% \item $M^n$ a smooth closed $n$-manifold \item $g$ a Riem. metric \item $Spin \to P \to M$ a principal $Spin(n)$-bundle \item $A$ a connection on $P$ \item $S$ a string class \end{itemize} \end{itemize} \hypertarget{outline}{}\subsubsection*{{Outline}}\label{outline} \begin{itemize}% \item I $\{String\ Structures\}/_{homotopy}$ \item II harmonic 4-forms on $P$ \item III geometry and tmf? \end{itemize} \hypertarget{i_string_structures}{}\subsubsection*{{I. String structures}}\label{i_string_structures} \textbf{definition} \begin{itemize}% \item $B String$ is defined to be the homotopy fiber $B String(n) \to B Spin(n) \stackrel{p_1/2}{\to} K(\mathbb{Z},4)$ \item a \textbf{[[string structure|String structure]]} on $\pi : P \to M$ is a lift of the classifying map to $B Spin$ through $B String \to B Spin$ \begin{displaymath} \itexarray{ P && B String \\ \downarrow &\nearrow& \downarrow \\ M &\to& B Spin } \end{displaymath} \end{itemize} \textbf{Prop} \begin{itemize}% \item String structure exists iff $\frac{1}{2}p_1(P) = 0 \in H^4(X,\mathbb{Z})$ (essentially by definition through homotopy fiber) \item let $i^*_P$ the pullback to the fiber of $P$, then we have \end{itemize} \begin{displaymath} \{ String\ structures \}/_{homotopy} \simeq_{canonical} \{ String\ classes \} := \{\rho \in H^3(P,\mathbb{Z})\ s.t.\ i_P^* \rho = 1 \in H^3(Spin, \mathbb{Z})\} \end{displaymath} \begin{itemize}% \item $\{string\ classes\}$ is a torsor for $H^3(M, \mathbb{Z})$ under $\rho \mapsto \rho + \pi^ H^3(M)$ \end{itemize} Proof. universal example \begin{displaymath} \itexarray{ K(\mathbb{Z},3) &\simeq& \pi^* E Spin &\to & E Spin \\ && B String &\to& B Spin &\to& K(\mathbb{Z}, 4) } \end{displaymath} \begin{quote}% hm, here is my ([[Urs Schreiber|Urs]]) description of the situation: \end{quote} consider the following pasting diagram of [[homotopy limit|homtopy pullbacks]] ($P$ is the given $Spin$-bundle, $\hat P$ its String-lift) \begin{displaymath} \itexarray{ String &\to& \hat P &\to& {*} \\ \downarrow && \downarrow && \downarrow \\ Spin &\to& P &\to& B^2 U(1) &\to& {*} \\ \downarrow && \downarrow && \downarrow && \downarrow \\ {*} &\to& X &\to& B String(n) &\to& B Spin(n) } \end{displaymath} \textbf{Why String structures?} String structure on $P$ $\stackrel{transgresses}{\mapsto}$ Spin structure on loop space $L Spin \to L P \to L M$ but all the reps of this loop group are projective, so there is actually a central $S^1$ extension of $L Spin$ in the game \begin{displaymath} \hat {L Spin} \to L Spin \end{displaymath} Need: \begin{displaymath} \itexarray{ \hat {L Spin} &\to & \hat {L P} \\ \downarrow && \downarrow \\ L Spin &\to& L P } \end{displaymath} \begin{displaymath} \rho \in H^3(P, \mathbb{Z}) \mapsto \end{displaymath} \begin{displaymath} \itexarray{ (\pi_! ev^*) \rho &\in& H^2(L P, \mathbb{Z}) \\ \downarrow && \downarrow \\ iniv. ext. && H^2(L G, \mathbb{Z}) } \end{displaymath} (on the right: $S^1$-bundles) \textbf{String orientation} of tmf = topological modular forms \begin{displaymath} M O\langle 8\rangle^{-n} = M String \stackrel{\sigma}{\to} tmf^{-n}(pt) \end{displaymath} so give a String manifold with a String class on $Spin(T M)$ \begin{displaymath} M , \rho \mapsto [M, \rho] \mapsto \sigma(M,\rho) \end{displaymath} \begin{displaymath} \itexarray{ && tmf \\ & {}^{\sigma}\nearrow & \downarrow \\ M String &\stackrel{Witten\ genus}{\to}& Mod Forms } \end{displaymath} $Witten\ genus(M) =$ ``$index^{S^1} D_{L M}$'' (by the way, $\sigma$ is surjective on homotopy classes) \textbf{warning}: I think above my $\rho$ should really be an $S$ \hypertarget{ii_harmonic_representative_of_}{}\subsubsection*{{II Harmonic representative of $S$}}\label{ii_harmonic_representative_of_} \emph{reminder} $(M,g) \mapsto \Delta = d d^* + d^* d$ \begin{displaymath} H^k(M,\mathbb{R}) \simeq_{Hodge} \Delta^*_g \subset \Omega^k(M) \end{displaymath} \textbf{construction} start with $(\pi : P \to M, g_m, A)$ choose a bininvariant metric \begin{displaymath} g_\rho := \pi^* g_m \oplus g_{spin} \end{displaymath} where the direct sum comes from the splitting of tangent spaces $T_p P$ using the connection that we have Introduce scaling factor $\delta \gt 0$ \begin{displaymath} g_\rho := \pi^* g_m \oplus \delta^2 g_{spin} \end{displaymath} take the ``adiabatic limit'' $\lim_{\delta \to 0}$ so now there is a 1-parameter family of metric on the bundle, and for each one can look at its Laplacian, so as $\delta$ tends to 0 something becomes singular and one has to be careful, but fortunately others already did that for us\ldots{} \textbf{theorem} (Mazzeo-Melrose, Dai, Forman) the kernel $Ker \Delta_{g_\rho}$ \begin{itemize}% \item extends smoothly to $\delta = 0$ \emph{(there is a smooth path in some Grassmannian space)} \item and comes from a filtration isomorphic to Serre SS for $(Spin \to P \to M)$ \end{itemize} this means that \begin{displaymath} \Rightarrow H^k(P, \mathbb{Z}) \stackrel{\simeq}{\to} \lim_{\delta \to 0} Ker \Delta_{g_\rho} =: H^k(P) \end{displaymath} \textbf{Theorem} (Redden) Given $P \stackrel{\pi}{\to} g, A$ and $\frac{1}{2}p_1(P) = 0$ then \begin{displaymath} \itexarray{ H^3(P, \mathbb{Z}) &\to& H^3(P,\mathbb{R}) &\to& H^3(P) \\ S &&\mapsto& CS_3(A)&& CS_3(A) - \pi^* H } \end{displaymath} here $CS_3(A)$ is the Chern-Simons 3-form of the spin-connection and recall $H^3(P)$ here denotes \emph{harmonic forms} on $P$ (should really be script font \textbf{remark} in genral \begin{displaymath} [\rho]_{g_\delta} = CS_3(A) - \pi^* H + O(\delta) \notin \pi^* \Omega^3(M) \end{displaymath} if we have a product of two groups we accordingly would get CS of one connection minus CS of the other. \textbf{What is $H$?} (first digression) \textbf{theorem} (Chern-Simons,\ldots{}) given $(P \to M , A) \mapsto \widehat{\frac{1}{2}p_1}(A) \hat H^4(M)$ \begin{displaymath} \itexarray{ \Omega^3_{\mathbb{Z}} &\to& (M)\Omega^3(M) &\stackrel{a}{to}& \hat H^4(M) &\to& H^4(M,\mathbb{Z}) &\to& 0 \\ && H &\mapsto& \hat{\frac{1}{2}p_1(A)} &\mapsto& \frac{1}{2}p_1(P) = 0 && } \end{displaymath} in particular \begin{displaymath} \itexarray{ && \mathbb{R} \\ & {}^{\int H} \nearrow & \downarrow \\ \mathbb{Z}_3(M) &\stackrel{\hat {\frac{1}{2}p_1(A)}}{\to}& \mathbb{R}/\mathbb{Z} } \end{displaymath} and secondly $d^* H = 0$ these two properties determine $H$ uniquely up to harmonic forms $\mathcal{H}^3_{\mathbb{Z}}(M) = ker \Delta_g$ \textbf{Equivariance} \begin{displaymath} H_{\rho + \pi^* \psi} = H_\rho + \pi^* H4 \end{displaymath} where $\psi \in H^3(M, \mathbb{Z})$ $\mapsto H_4 \in \mathcal{H}^3(M)$ over all what this says is that if we go from \begin{displaymath} \itexarray{ Metr(M)\times A(P) \times \{String\ Classes\} & (g,A,S) \\ \downarrow & \downarrow \\ \Omega^3(P) & CS_3(A) - \pi^* H_{q,A,S} \\ \downarrow & \downarrow \\ \Omega^3(M) & H_{g, A \rho} } \end{displaymath} \begin{displaymath} \itexarray{ && tmf^{-n} \\ & \nearrow & \downarrow \\ M String &\stackrel{}{\to}& MF } \end{displaymath} \textbf{conjecture} (S. Stolz) if $M$ is String and admits a positive Ricci curvature metric, then $Witten(M) = 0$ question: also $\sigma(M,\rho) = 0$? no, no way! \textbf{hypothesis} If $M$ is a Spin manifold that admits a metric and String structure $(g, S)$ and $A$ is the Levi-Civita connection such that \begin{itemize}% \item $Ric(g) \gt 0$ \item $H_{g,s} = 0 \in \Omega^3(M)$ \end{itemize} $\Rightarrow \sigma(M,S) = 0 \in tmf^{-n}(pt)$ \textbf{example} $M = S^3 = SU(2)$ \begin{displaymath} p_1 \in H^4(S^3) = 0 \end{displaymath} \begin{displaymath} H^3(S^3, \mathbb{Z}) = \mathbb{Z} = number\ of\ string\ classes \end{displaymath} \begin{displaymath} d H = d^* H = 0 \Rightarrow H \in H^3(S^3, \mathbb{R}) \simeq \mathbb{R} \end{displaymath} \begin{displaymath} \itexarray{ String\ Classes \\ \downarrow \\ M String^{-3} = \pi_3^S = tmf^{-3} = \mathbb{Z}/{24} } \end{displaymath} \begin{quote}% (can't type the full diagram\ldots{}) \end{quote} consider a 1-parameter family of ``berger metrics'' on $S^3$ rescaling the fiber in the Hopf fibration $S^1 \to S^3 \to S^2$ \hypertarget{konrad_waldorf}{}\subsection*{{Konrad Waldorf}}\label{konrad_waldorf} \begin{quote}% [[Urs Schreiber|Urs]]: I had to miss that and the following two talks, hopefully somebody else has notes. Konrad's talk is based on his new article \end{quote} \begin{itemize}% \item [[Konrad Waldorf]], \emph{String connections and Chern-Simons theory} (\href{http://arxiv.org/abs/0906.0117}{arXiv}) \end{itemize} \hypertarget{one_more}{}\subsection*{{one more}}\label{one_more} \ldots{} \hypertarget{mike_hopkins__kervaire_invariant_one}{}\subsection*{{Mike Hopkins : Kervaire invariant one}}\label{mike_hopkins__kervaire_invariant_one} \ldots{} \vspace{.5em} \hrule \vspace{.5em} [[Oberwolfach Workshop, June 2009 -- Thursday, June 11|Previous day]] --- [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology|Main workshop page]] --- No next day \end{document}