\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Oberwolfach Workshop, June 2009 -- Tuesday, June 9} Here are notes by [[Urs Schreiber]] for Tuesday, June 9, from [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology|Oberwolfach]]. \hypertarget{schick_differential_cohomology}{}\subsection*{{Schick: differential cohomology}}\label{schick_differential_cohomology} smooth cohomology \begin{itemize}% \item idea: \begin{itemize}% \item combine cohomology + differential forms \end{itemize} \end{itemize} main diagram \begin{displaymath} \itexarray{ \hat H(M) &\stackrel{I}{\to}& H^\bullet(M) \\ \downarrow^{R} && \downarrow \\ \Omega^\bullet_{d=0}(M) &\stackrel{}{\to}& H^\bullet_{dR}(M) \simeq H^\bullet(M,\mathbb{R}) } \end{displaymath} so differential cohomology $\hat H^\bullet(M)$ combines the ordinary cohomology $H^\bullet(M)$ with a differential form representative of its image in real cohomology. \begin{itemize}% \item $I$ projects a differential cohomology to its underlying ordinary cohomology class; \item $R$ send the differential cohomology class to its \textbf{curvature\_ differential form data} \end{itemize} we want an exact sequence \begin{displaymath} \itexarray{ H^{\bullet-1}(M) &\stackrel{ch}{\to}& \Omega^{\bullet-1}(M)/{im(d)} &\stackrel{d}{\to}& \hat H(M) &\stackrel{I}{\to}& H^\bullet(M) \to 0 \\ &&& {}_{d}\searrow & \downarrow^R \\ &&&& \Omega^\bullet_{d=0}(M) } \end{displaymath} \textbf{definition} Given cohomology theory $E^\bullet$, a smooth refinement $\hat E^\bullet$ is a functor $\hat E : Diff \to Grps$ with transformations $I, R$ such that \begin{displaymath} \itexarray{ \hat E(M) &\stackrel{I}{\to}& E^\bullet(M) \\ \downarrow^{R} && \downarrow \\ \Omega^\bullet_{d=0}(M, V) &\stackrel{}{\to}& E^\bullet_{dR}(M) \simeq E^\bullet(M,\mathbb{R}) } \end{displaymath} where $V = E^\bullet(pt)\otimes \mathbb{R}$ is the graded non-torsion cohomology of $E$ on the point. So now all the gradings above denote total grading. and such that there is a transformation \begin{displaymath} a : \Omega^{\bullet -1}(M)/{im(d)} \to \hat E^*(M) \end{displaymath} that gives the above kind of exact sequence \textbf{definition} if $E^*$ is multiplicative, we say $\hat E^*$ is multiplicative with product $\vee$ if $\hat E$ takes values in graded rings and the transformations are compatible with multiplicative structure, where \begin{displaymath} a(\omega) \vee x = a(\omega \wedge R(x)) \end{displaymath} \textbf{definition} $\hat E$ has $S^1$-integration if there is a natural (in $M$) transformation \begin{displaymath} \int : \hat E^*(M \times S^1) \to \hat E^{\bullet -1}(M) \end{displaymath} compatible with $\int$ of forms and for $E$ it is given by the suspension isomorphism and \begin{displaymath} \int \circ p^* = 0 \end{displaymath} for $p : M \times S^1 \to M$ and \begin{displaymath} \int \circ ( id \times (z \mapsto \bar z) )^* = - \int \end{displaymath} \textbf{remark} ordinary cohomology theories are supposed to be homotopy invariant, but differential forms are not, so in general the differential cohomology is not \textbf{Lemma} Given $\hat E$ a smooth cohomology theory. The \textbf{homotopy formula}: given $h : M \times [0,1] \stackrel{smooth}{\to} N$ a smooth homotopy we have \begin{displaymath} h^*_1(X) - h^*_0(X) = a( \int_{M \times [0,1]/M} h^*(R(x))) \end{displaymath} \textbf{corollary} $ker(R)$ (i.e. flat cohomology) is a homotopy invariant functor \textbf{def} $\hat _H{flat} := ker(R)$ \textbf{proof of lemma} suffices to show \begin{displaymath} \iota_1^*(x) - \iota_0^*(x) = a(\int_{M\times [0,1]/M} R(x)) \end{displaymath} for all $x \in \hat E(M \times [0,1])$ observe if $x = p^* y$ the left hand side vanishes, $\int R(p^* y) = 0$ for general $x$ $\exists y \in \jhat E(M)$; $x - p^*(y) = a (\omega)$ $\omega \in \Omega(M \times [0,1])$ Stokes' theorem gives $i^*_1 \omega - i^*_0 \omega = \int_{[0,1]} d \omega$ $= \int R(a(\omega)) = \int R(x-p^* \omega) = \int R(x)$ on the other hand \begin{displaymath} i^*_1(x) - i^*_0(x) = i^*_1(a(\omega)) - i^*_0(a(\omega)) = a(\int R(x)) \end{displaymath} a calculation: $\hat H^1_{flat}(pt) = \hat H^1(pt) = \mathbb{R}/\mathbb{Z} = \hat K^1(pt)$ \textbf{Theorem (Hopkins-Singer)} For each generalized cohomology theory $E^*$ a differential version $\hat E^*$ as in the above definition does exist Moreover $\hat E_{flat}^* = E \mathbb{R}/\mathbb{Z}^{\bullet -1}$ \textbf{remark} it's not evident hot to obtain more structure like multiplication \textbf{theorem} using geometric models, multiplicative smooth extensions with $S^1$-integration are constructed for \begin{itemize}% \item K-theory (Bunke-Schick) \item MU-bordisms (unitary bordisms)\newline (Bunke-Schr\"o{}der-Schick-Wiethaupts; and from there Landweber exact cohomology theories) \end{itemize} \textbf{uniqueness theorem (Bunke-Schick)} (Simons-Sullivan proved this for ordinary integral cohomology) assume $E^*$ is \emph{rationally even}, meaning that \begin{displaymath} E^k(pt)\otimes \mathbb{Q} = 0 \;\; for odd k \end{displaymath} plus one further technical assumption then any two smooth extensions $\hat E^*$, $\tilde E^*$ are naturally isomorphic such that if required to be compatible with integration the ismorphism is unique if $\hat E, \tilde E$ are multiplicative, then this isomorphism is, as well. \textbf{example} if we don't require compatibility with $S^1$-integration, then there are ``exotic'' abelian group structures on $\hat K^1$ \hypertarget{bunke_smooth_ktheory}{}\subsection*{{Bunke: smooth K-theory}}\label{bunke_smooth_ktheory} (I gave up taking notes in that one, maybe somebody else has notes?) \hypertarget{costello_part_ii}{}\subsection*{{Costello, part II}}\label{costello_part_ii} alternative to yesterday's axioms: replace $B(M)$ by $Embeddings(\bar D^n, M)$ and replace $B_n(M)$ by \begin{displaymath} Embed(D^n, M) \times Enb(\bar D^n \coprod \cdots \coprod \bar D^n, \bar D^n) \end{displaymath} \begin{itemize}% \item what is the classical analog of a factorization algebra? \item and how do we get classical QFT? \end{itemize} \textbf{basic idea} factorization algebras form a symmetric monoidal category so we can look at [[algebra over an operad]] in the category of factorization algebras if $F, F'$ are factorization algebras, then \begin{displaymath} (F\otimes F')(B) = F(B) \otimes F'(B) \end{displaymath} \textbf{def} a \textbf{classical factorization algebra} is a commutative algebra in the category of factorization algebras recall, an $E_\infty$ object in $E_n$-algebras is an $E_\infty$-algebra idea of how to associate a classical factorization algebra to a classical field theory is as follows suppose we have classical field theory, e.g. space of fields is section of a vector bundle $E \to M$ \begin{displaymath} S : \Gamma(M,E) \to \mathbb{R} \end{displaymath} is the classical action $S$ is local: obtained by $int$ of a Lagrangian if $B \subset M$ is a ball, let \begin{displaymath} EL(B) = \left\{ \phi \in \Gamma(interior(B), E) such that \phi satisfies Euler-Lagrange equations \right\} \end{displaymath} \begin{quote}% Freed: notice that you are doing here classical QFT in Euclidean signature Costello: yes \end{quote} \textbf{rough idea} the classical factorization algebra $X_S$ associated to $S$ assigns to $B$, the algebra \begin{displaymath} O(EL(B)) \end{displaymath} of functions on the set of solutions to $EL$. we want maps \begin{displaymath} X_S(B_1) \otimes \cdots \otimes X_S(B_n) \to X_S(B_{n+1}) \end{displaymath} for $B_i$ in $B_{n+1}$ we have a map \begin{displaymath} EL(B_{n+1}) \to EL(B_1)\times \cdots \times EL(B_n) \end{displaymath} this yields a map \begin{displaymath} O(EL(B_1)) \otimes \cdots \otimes O(EL(B_{n+1})) \end{displaymath} as desried \textbf{simple example} fields are $C^\infty$ functions on $M$ \begin{displaymath} S(\phi) := \int_M \phi \Delta \phi \end{displaymath} Euler-Lagrange equation is $\Delta \phi = 0$ \begin{displaymath} EL(B) = \{Harmonic functions on the interior of B\} \end{displaymath} \begin{displaymath} O(EL(B)) = \prod_{n \geq 0} Hom(EL(B)^{\otimes n}, \mathbb{R})^{S_n} \end{displaymath} where Hom means continuous linear maps, and where $\otimes$ is the completed tensor product later, for more complex examples, what we really want to do is to take the \emph{derived} space of EL solutions \textbf{question} Why does this classical factorization algebra want to become just a factorization algebra? recall that fact-algebras form a symmetric monoidal category the $E_0$-[[operad]] is defined by \begin{itemize}% \item $E_0(n) = \emptyset$ for $n \geq 1$ \item $E_0(0) = pt$ \end{itemize} so for instance an $E_0$-algebra in $Vect$ is a vector space with an element forgot to mention that factorization algebras need to have a unit, a section $F$ on $B(M)$ which is a unit for the product So: an $E_0$-algebra in factorization algebras is just a factorization algebra \begin{displaymath} \itexarray{ graded commutative algebra with Poisson bracket of deg +1 &\stackrel{quantize}{\to}& E_0-algebras (in co[[chain complex]]es) \\ Poisson &\stackrel{quantize}{\to}& E_1-algebras \\ graded comm algebra with Poisson bracket of deg -1 &\stackrel{quantize}{\to}& E_2-algebras \\ graded comm algebra with Poisson bracket of deg -2 &\stackrel{quantize}{\to}& E_3-algebras } \end{displaymath} Beilinson and Drinfeld define an operad over (i.e. in the category of cochain complex moudles over) the ring of formal power series over $\hbar$ \begin{displaymath} \mathbb{R}[\![\hbar]\!] \end{displaymath} as follows: \begin{itemize}% \item generated by $\cdot$, a commutative product \item $\{-,-\}$ a Poisson bracket of deg +1 \item with differential $d(-) = \hbar \{-,-\}$ \end{itemize} call this the \textbf{BD operad} \begin{displaymath} BD/\hbar BD = operad of commutative algebras with \{-,-\} of deg +1 \end{displaymath} \begin{displaymath} H_\bullet(BD(n) \otimes_{\mathbb{R}[\![\hbar]\!]} \mathbb{R}(\hbar)) = 0 \end{displaymath} so \begin{displaymath} BD \otimes_{\mathbb{R}[\![\hbar]\!]} \mathbb{R}[\![\hbar]\!] \simeq E_0 \end{displaymath} \textbf{rant on [[BV-theory]] termionology} framed $E_2$, which is often called the \emph{BV-operad} has \textbf{nothing} to do with the [[BV-theory]] instead: the BD-operad from above is the one related to [[BV-theory]] \textbf{def} the $P_0$ (or $Poisson_0$) operad is the operad of commutative Poisson algebras with $\{-,-\} of deg 1$ so $P_0 = BD/\hbar$ \textbf{general fact} let $M$ be a manifold, and $f : M \to \mathbb{R}$ a function, then $O(derived critical locus of f)$ is a $P_0$-operad derived critical locus has as functions the [[differential graded algebra]] \begin{displaymath} \cdots \Gamma(M,\Lambda^2 T M) \stackrel{\vee d f}{\to} \Gamma(M,\Lambda^ T M) \stackrel{\vee d f}{\to} O(M) = \Gamma(M, \Lambda^\bullet T M) \end{displaymath} here $\Lambda^k T M$ is in degree $-k$ with differential $\vee d f$ \begin{displaymath} \Gamma(M, \Lambda^\bullet T M) \end{displaymath} has Schouten bracket, which is of degree +1 This ``wants to become'' $E_0$ \textbf{observation} if $M$ has a [[measure]], then $O(crit^n(f))$ has a canonical quantization to an algebra over $BD$. then quantization is \begin{displaymath} \Gamma(M, \Lambda^\bullet T M), \vee d f + \hbar \Delta \end{displaymath} here $\Delta$ arises whenever $M$ has a measure \begin{displaymath} \Delta X = Div X \end{displaymath} \begin{displaymath} X \in \Gamma(M, T M) \end{displaymath} \hypertarget{costello_part_iii}{}\subsection*{{Costello, part III}}\label{costello_part_iii} so recall that the derived critical locis if a function is a $P_0$-algebra, so it wants to quantize to $E_0$ if we have a classical field theory, the derived space of solutions to EL yields a $P_0$ algebra in factorizatoin algebra so it wants to become a factorization algebra \textbf{Example} $\phi \in C^\infty(M)$, $S(\phi) = \int \phi \Delta \phi$ derived space of solutions to EL is the complex \begin{displaymath} \itexarray{ C^\infty(M) &\stackrel{\Delta}{\to}& C^\infty(M) \\ 0 && 1 } \end{displaymath} if $B \subset M$ is a ball, then \begin{displaymath} O(EL^n(B)) = \Pi_{n \geq 0}( Hom( C^\infty(int B) \stackrel{\Delta}{\to} C^\infty(int B))^{\otimes n}, \mathbb{R} )^{S_n} \end{displaymath} this is a commutative dga and defines a commutative factorizaton algebra if we add an interaction term to the action functional \begin{displaymath} S(\phi) = \int \phi \Delta \phi + \phi^3 \end{displaymath} then we get the same algebra of functions but the differential changes in Yang-Mills theory with gauge Lie algebra $g$: first, we consider the derived quotient of $\Omega^1(M)\otimes g$ by $\Omega^0(M)\otimes g$, then, take derived critical locus of YM action What we get, when linearized looks like \begin{displaymath} ( \itexarray{ \Omega^0(M) &\to& \Omega^1(M) &\stackrel{d \star d}{\to}& \Omega^3(M) &\stackrel{}{\to}& \Omega^4(M) \\ -1 && 0 && 1 && 2 }) \otimes g \end{displaymath} the algebra of functions iss \begin{displaymath} \Pi_{n \geq 0} Hom(E^{\otimes n}; \mathbb{R})^{S_n} \end{displaymath} with diffeential including YM action \textbf{theorem} if we take the derived space of solutions to the EL equations, looking infinitesimally near a fixed solution, then we find a $P_0$-algebra internal to factorization algebras on $M$ this amounts to quantizing the action $S$ into a solution of the quantum master equation this requires machinery of counter-terms, Wilsonian effective actions, to even define the quantum master equation \begin{quote}% see Kevin Costello's book linked to on hos website for details \end{quote} \textbf{theorem} (joint with O. Gwilliam) (``wave'' version) conssider the scalar field theory, with an action of the form \begin{displaymath} S(\phi) = \int \phi (\Delta \phi + m^2 \phi) + arbitrary local higher terms \end{displaymath} use the above theorem, around the 0-solution Let $X_S$ be the classical factorization algebra associated to it (it is a $P_0$-algebra) Let $Q^{(n)}(X_S)$ be the set of quantizations = $\{lifts of$X\_S$to an algebra over BD/{\hbar^{n+1}}\}$ there is a sequence $T^{(n)} \to T^{(n-1)} \to \cdots \to T^{(1)} \to pt$ where $T^{(n)}$ maps to $Q^{(n)}(X_S)$, so that the obvious diagram commutes where $T^{(n)} \to T^{(n-1)}$ is a torsor for the abelian group of local functions of the field $\phi$ so $T^{(\infty)} = lim_n T^n$ then \begin{displaymath} T^{(\infty)} \simeq \{\sum_{k \geq 1} \hbar^k S^{(k)}\} \end{displaymath} $S^{(k)}$ is a local function, but this is non-canonical \textbf{more sophisticated version} consider any reasonable classical theory, with its classical factorization algebra $X_S$ let $Q^{(n)}(X_S) = simplicial set of possible quantizations defined mod \hbar^{n+1}$ $Der_{loc}(X_S)$ is the cochain complex of derivations of $X_S$, preserving $P_0$-structure (is, in fact, local functions on an extended space) theorem there exists a sequence of simplicial sets \begin{displaymath} T^{(n)} \to T^{(n-1)} \to \cdots \to T^{(1)} \to pt \end{displaymath} with maps $T^{(n)} \to Q^{(n)}(X_S)$ such that $T^{(n)}$ fits into a [[homotopy limit|homotopy fiber diagram]] \begin{displaymath} \itexarray{ T^{(n)} &\to& 0 \\ \downarrow && \downarrow \\ T^{n-1} &\stackrel{obstruction}{\to}& Der_{loc}(X_S)[2] } \end{displaymath} so we get obstructions; for instance for $\phi^4$-theory the obstruction is the famous $\beta$-function \textbf{theorem} Let $g$ be a simple Lie algebra. Then there is a quantization of Yang-Mills theory on $\mathbb{R}^4$ which is ``renormalizable'' (behaves well with respect to scaling) the set of quantizations is 1-dimensional term by term The set of such quantizations is $\hbar \mathbb{R}[\![\hbar]\!]$ \textbf{correlation functions} Where do correlation functions appear? If $F$ is a factorization algebra on $M_S$, corresponding to some QFT, then $F(B) = \{measurements we can make on the ball B\}$ if $B_1, B_2 \subset B$ are disjoint, the maps \begin{displaymath} F(B_1)\otimes F(B_2) \to F(B) \end{displaymath} is defined by doing both observations correlation functions should be cochain maps \begin{displaymath} \langle F(B_1) \otimes \cdots \otimes F(B_n) \to \mathbb{R} \rangle \end{displaymath} if $B_1, \cdots, B_n$ are disjoint, if $O_i \in F(B_i)$ then \begin{displaymath} \langle O_1, \cdots, O_n\rangle \end{displaymath} is a measurement of how to observe $O_i$ correlations if $B_1, B_2 \subset \tilde B$ the diagram \begin{displaymath} \itexarray{ F(B1) \otimes \cdots \otimes F(B_n) &\stackrel{\langle \cdots \rangle}{\to}& \mathbb{R} \\ \downarrow && \uparrow^{\langle \cdots \rangle} \\ F(\tilde B) \otimes F(B_3) \otimes \cdots \otimes F(B_n) } \end{displaymath} should commute (operator product expansion) we can consider correlation functions with coefficients in any cochain complex, we require they must satisfy this equation \textbf{def} (Beilinson-Drinfeld) \begin{displaymath} CH_\bullet(M,F) = homotopy universal recipient of correlation functions \end{displaymath} \begin{displaymath} = colim_{B_1, \cdots B_n \subset M disjoint} F(B_1) \otimes \cdots F(B_n) \end{displaymath} (Kevin Walker (blob homology), Jacob Lurie (topological chiral homology)) \textbf{lemma} for a massive scalar field, \begin{displaymath} CH_\bullet(M,F) \simeq \mathbb{R}[\![\hbar]\!] \end{displaymath} in general $CH_\bullet(M,F)$ looks like measures on the space of critical points of the classical action if we perturb around isolated critical points, $CH_\bullet(M,F) = \mathbb{R}[\![\hbar]\!]$ in this situation correlation functions exist and are unique general program: correlation functions define a measure on the space of classical solutions (Feynman graphs appear here as homotopies between operads, or something, see his book) \vspace{.5em} \hrule \vspace{.5em} [[Oberwolfach Workshop, June 2009 -- Monday, June 8|Previous day]] --- [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology|Main workshop page]] --- [[Oberwolfach Workshop, June 2009 -- Wednesday, June 10|Next day]] \end{document}