\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Oberwolfach Workshop, June 2009 -- Wednesday, June 10} Here are notes by [[Urs Schreiber]] for Wednesday, June 10, from [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology|Oberwolfach]]. \hypertarget{alexander_kahle_superconnections_and_index_theory}{}\subsection*{{Alexander Kahle: superconnections and index theory}}\label{alexander_kahle_superconnections_and_index_theory} \begin{itemize}% \item 1) superconnections \item 2) index theory \item 3) sketch some proofs \end{itemize} \hypertarget{1_superconnections}{}\subsubsection*{{1) superconnections}}\label{1_superconnections} \textbf{definition} A \textbf{superconnection} $\nabla_s$ on a $\mathbb{Z}_2$-graded vector bundle $V \to M$ is an odd derivation on $\Omega^\bullet(M,V)$ superconnections form an affine space modeled on $\Omega^\bullet(M, End(V))^{odd}$ \begin{displaymath} End(V) \end{displaymath} \begin{displaymath} \nabla_s = \omega_0 + \nabla + \omega_2 + \omega_3 \end{displaymath} class in $K$-theory given by a map $V \stackrel{f}{\to} W$ unitary superconnection on $\mathbb{Z}_2$-graded unitary bundles $V$ with map as a above look like \begin{displaymath} \nabla_s = \left( \itexarray{ & f^* \\ f & } \right) + \nabla \end{displaymath} \textbf{Chern character} by the usual formulas \begin{displaymath} ch(\nabla_s) := sTr e^{\nabla^2} \end{displaymath} \hypertarget{2_index_theory}{}\subsubsection*{{2) index theory}}\label{2_index_theory} \textbf{definition} Let $M$ be smooth Riemannian and $Spin$, The Dirac operator associated to $(V \to M, \nabla_s)$ is defined by \begin{itemize}% \item \begin{itemize}% \item \begin{displaymath} D(\nabla_s) : \Gamma(S \otimes V) \stackrel{\nabla_s \otimes 1 \oplus 1 \otimes \nabla_s}{\to} \Omega^\bullet(M, S \otimes V) \stackrel{c(.)}{\to} \Gamma(S \otimes V) \end{displaymath} \end{itemize} \end{itemize} This is \begin{itemize}% \item an elliptic operator; \item formally self adjoint \item of the form \begin{displaymath} D(\nabla_s) = \left( \itexarray{ & D'(\nabla_s) \\ D'(\nabla_s) } \right) \end{displaymath} \item \textbf{theorem} (corollary of Atiyah-singer index theory) \begin{displaymath} index(D(\nabla_s)) = index(D(\nabla)) = \int_M \hat A(\Omega^m) ch(\nabla_s) \end{displaymath} \end{itemize} so superconnections don't give new topological data: they are geometric objects with the same underlying topology as ordinary connections but refined ``geometry'' recall that Atiyah-Singer says that \begin{displaymath} Tr \exp(-t D(\nabla_s)^2 ) = index(D(\nabla_s)) \end{displaymath} the heat semi-group is smoothing, therefore it is represented by a kernel \begin{displaymath} \exp(-t D(\nabla_s)^2) \psi(x) = \int_M p_t(x,y) \psi(y) d y \end{displaymath} \begin{displaymath} Tr \exp(-t D(\nabla_s)^2) = \int_M Tr p_t(x,x) d vol \end{displaymath} the following expected formula which holds for ordinary connections (due to Ezra Getzler) \emph{no longer} holds directly for superconnections \begin{displaymath} \lim_{t \to 0} Tr p_t(x,x) d vol \neq (2 \pi i)^{-n/2} [ \hat A(\Omega^m) ch(\nabla_s) ]_n \end{displaymath} here $n = dim X$ is the dimension of the manifold problem is that components in a superconnections scale in a different to make it true, we need to rescale \begin{displaymath} \nabla_s^t := |t|^{-1/2} \omega_0 + \nabla + |t|^{1/2} \omega_2 + \cdots \end{displaymath} A Riemannian map is a triple $(\pi, g, P)$ $\pi : M \to B$ a family with fibers close Spin manifolds, $g^{M/B}$ a metric onm the fibers, \begin{displaymath} p : T(M) \to T(M/B) \end{displaymath} \begin{displaymath} \itexarray{ V, \nabla_s \\ \downarrow \\ M \\ \downarrow^\pi \\ B } \end{displaymath} $\pi_* (V)$ : a fibre at $y \in B$ is $\Gamma_y(S^{M/B} \otimes V)$ due to Bismut we get from a connection on the top a superconnecction on the bottom (which is one of the main original motivations to be interested in superconnection in the first place), which we tweak here a bit to get a superconnection on $B$ from a superconnection on $V$ \begin{displaymath} \pi_! \nabla_s = \pi_! \nabla + \pi_! \omega \end{displaymath} with $\nabla_s = \nabla + \omega$ \begin{displaymath} [\pi_! \omega_!]_{\omega}(\xi_1, \cdots, \xi_i) = c^{M/B}(2 (\tilde \xi_1), 2(\tilde \xi_2) \cdots 2(\tilde \xi_k)) \end{displaymath} \begin{displaymath} \pi^r = (\pi, r g^{M/B}, P) \end{displaymath} \begin{displaymath} \lim_{t \to 0} ch(\pi_!^t \nabla_s) = (2 \pi i)^{dim M/B} \pi_* [ \hat A(\Omega^{M/B} ch(\nabla_s)) ] \end{displaymath} the scalings are related by \begin{displaymath} \pi_!^t(\nabla_s) = [\pi_! \nabla_s^{1/t}]^t \end{displaymath} \hypertarget{determinant_line_bundles}{}\subsubsection*{{determinant line bundles}}\label{determinant_line_bundles} (\ldots{}skipping a bunch of remarks\ldots{}) \hypertarget{3_sketch_of_some_proofs}{}\subsubsection*{{3) sketch of some proofs}}\label{3_sketch_of_some_proofs} (no time, as expected) \hypertarget{operads}{}\subsubsection*{{$\infty$-operads}}\label{operads} Baronikov-Kontsevich passage \hypertarget{gabriel_drummondcole_operads__and_}{}\subsection*{{Gabriel Drummond-Cole; $\infty$-operads, $BV_\infty$ and $HyperComm_\infty$}}\label{gabriel_drummondcole_operads__and_} \begin{quote}% (was hard to take typed notes of this otherwise pretty cool talk, does anyone have handwriitten notes?) \end{quote} \hypertarget{scott_wilson_categorical_algebra_mapping_spaces_and_applications}{}\subsection*{{Scott Wilson: Categorical algebra, mapping spaces and applications}}\label{scott_wilson_categorical_algebra_mapping_spaces_and_applications} (for closely related blog entry see \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2008/04/higher_hochschild_cohomology_a.html}{Higher Hochschild Cohomology and Differential Forms on Mapping Spaces} \end{itemize} ) outline \begin{itemize}% \item language for some elementary algebraic topology \item application to generalizatons of Hochschild complexes \item Examples \begin{itemize}% \item invariants on mapping spaces \item contributions related to def of Laplacian \end{itemize} \end{itemize} \textbf{def/lema} A commutative associative [[differential graded algebra]] is (equivalently given by) a strict monoidal functor \begin{displaymath} (FinSet, \coprod) \to (ChainComplexes, \otimes) \end{displaymath} generalize this \textbf{def} a \textbf{partial DGA} is a monoidal functor with coherence map given by weak equivalence in the model structure \begin{displaymath} A : (FinSet, \coprod) \to (ChainComplexes, \otimes) \end{displaymath} i.e. there exists a natural weak equivalence \begin{displaymath} A(j \sqcup k) \stackrel{T}{\to} A(j) \otimes A(k) \end{displaymath} that respects the obvious coherence properties generalized \begin{itemize}% \item 1) co-algebras \item 2) any operad \item 3) note that $FinSet_*$ (pointed finite sets) is a module over $FinSet$, so generalize to modules, comodules, etc. \end{itemize} Then weak partial algebras can be functorially replaced by $E_\infty$-algebras \textbf{example} $X$ be a space $j \stackrel{f}{\to} k$ \begin{displaymath} X^j = Map(j,X) \leftarrow Map(k,X) = X^k \end{displaymath} pass to the chains version of this \begin{displaymath} Ch_*(X^j) \leftarrow Ch_*(X^k) \end{displaymath} \begin{displaymath} Ch^*(X^j) \to Ch^*(X^k) \end{displaymath} by Kuenneth formula we have a chain equivalence \begin{displaymath} C_*(X^j) \otimes C_*(X^k) \to C_*(X^{j+k}) \end{displaymath} and similarly for cochains. so this gives two things: \begin{itemize}% \item a partial coalgebra on $C_*(X)$ \item a partial algebra on $C^*(X)$ \end{itemize} Let $Y$ be any finite simplicial space. A partial algebra \begin{displaymath} \Delta \stackrel{\gama}{\to} FinSet \stackrel{A}{\to} ChainCompl \end{displaymath} simplicial object in $ChainCompl$, so total complex \begin{displaymath} CH^\gamma(A) \end{displaymath} meaning generalization of Hochschild complex \begin{itemize}% \item this is joint work with Tradler and Zanelli (spelling? probably wrong) \end{itemize} goes back to Pitashvili and more recently Gregory Ginot For $A = \Omega(X)$, then $CH^\gamma(A)$ computes cohomology of $X^\gamma$, if $X$ is sufficiently connected \textbf{example} let $A$ be a strict algebra, and $\gamma = Y = S^1$ then \begin{displaymath} CH^{S^1}(A) = \prod_{n \geq 0} A \otimes A^{\otimes n} \end{displaymath} is the Hochschild complex there is also a shuffle product in the game, so this implies there is an exponential map calculate: \begin{displaymath} \exp(| \otimes x) = | + | \otimes x + | \otimes x \otimes x + | \otimes x \otimes x \otimes x + \cdots + \end{displaymath} \begin{displaymath} D \exp(1 \otimes x) = (1 \otimes d x + x \cdot x) \cdot e^{1 \otimes x} \end{displaymath} then: if $d x + x \cdot x = 0$ then $D e^{1 \otimes x} = 0$ this reminds us of curvature and connection this can be taken further let $A = \Omega^\bullet(M)$ be differential forms on $M$ \begin{displaymath} \itexarray{ && CH^{S^1}(A) (\simeq \Omega(M^{S^1})) \\ &\nearrow & \downarrow \\ K(M)&\stackrel{ch}{\to}&\Omega(M) } \end{displaymath} commutes (due to some people) \textbf{example 2} $Y = I$ (the interval) then $CH^I(A)$ is the 2-sided bar construction more generally $CH(A, M, N) = \prod_{n \geq 0} M \otimes A^{\otimes n} \otimes N$ with $M$ and $N$ $A$-modules sitting on the end of the interval consider the case $A = \Omega^\bullet(Riemannian manifold)$ and $M = A$ and $N = (\Omega^\bullet(...), d^* , (x\in A) \cdot (y\in N) = \star^{-1}(x \wedge \star y)))$ (the operatoin on $N$ here is the intersection product of forms) Let $D$ be differential on $CH^I$ let $D$ be differential on $CH^I$ for normal structure, and and $D^*$ for $A, M, N$ as just described. Set \begin{displaymath} \Delta = [D, D^*] \end{displaymath} then acting with this $\Delta$ on something produces interesting non-linear differential equations related to Witten't Morse-theory deformation of susy quantum mechanics and to Navier-Stokes' equations in fluid dynamics\ldots{} \vspace{.5em} \hrule \vspace{.5em} [[Oberwolfach Workshop, June 2009 -- Tuesday, June 9|Previous day]] --- [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology|Main workshop page]] --- [[Oberwolfach Workshop, June 2009 -- Thursday, June 11|Next day]] \end{document}