\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{PROP} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{model_structure_on_simplicial_props}{Model Structure on Simplicial PROPs}\dotfill \pageref*{model_structure_on_simplicial_props} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{bialgebras}{Bialgebras}\dotfill \pageref*{bialgebras} \linebreak \noindent\hyperlink{endomorphism_prop}{Endomorphism PROP}\dotfill \pageref*{endomorphism_prop} \linebreak \noindent\hyperlink{relation_to_polycategories}{Relation to Polycategories}\dotfill \pageref*{relation_to_polycategories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A `PROP' --- an abbreviation of `products and permutations category' --- is a [[symmetric monoidal category]] generated by a single [[object]], used to describe a given sort of algebraic structure. One can think of PROPs as a variant of [[Lawvere theory|Lawvere theories]] suitable for non[[cartesian monoidal category|cartesian]] contexts. In this respect they are similar to [[operad|operads]]. However, they are more general, because they can be used to describe operations with many outputs as well as many inputs. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{PROP} is a strict [[symmetric monoidal category]] where every object is of the form \begin{displaymath} x^{\otimes n} = x \otimes x \otimes \cdots \otimes x \end{displaymath} for a single object $x$ and $n \ge 0$. \end{defn} There is also a notion of colored PROP akin to [[colored operads]]. One way to define a colored PROP is as a certain kind of [[symmetric monoidal category]] (see Remark 2.2.14 of \hyperlink{Yau}{Yau}): \begin{defn} \label{}\hypertarget{}{} A \textbf{colored PROP} with set of colors $\mathfrak{C}$ is a strict symmetric monoidal category $(P,\odot)$ whose [[monoid]] of objects is freely generated by $\mathfrak{C}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{morphism of PROPs} $\phi:Q\to T$ is just a strict symmetric monoidal functor that takes the generators for the objects of $Q$ to the generators of the objects of $T$. Equivalently, a morphism of PROPs is a pair of functions: one from the colors of $Q$ to the colors of $T$, $\phi_c\colon Col(Q)\to Col(T)$, and for each pair of finite list of colors $\vec{x}=\{x_1,\ldots,x_n\}$ and $\vec{y}=\{y_1,\ldots,y_m\}$ in $Col(Q)$, a function $\phi_m\colon Q(\vec{x},\vec{y})\to T(\phi_c(\vec{x}),\phi_c(\vec{y}))$. The two functions $\phi_c$ and $\phi_m$ are of course required to preserve compositions, units and symmetries. \end{defn} Thus there is a \textbf{category of PROPs}. For more on this category, as well as some its properties, see \hyperlink{HR1}{HR1}. \begin{defn} \label{}\hypertarget{}{} Given a PROP $T$ and a symmetric monoidal category $C$, a [[symmetric monoidal functor]] \begin{displaymath} F : T \to C \end{displaymath} is called an \textbf{algebra} or \textbf{model} of $T$ in $C$. The category of algebras of $T$ in $C$, say $Alg(T,C)$, has \begin{itemize}% \item symmetric monoidal functors $F : T \to C$ as objects, \item [[symmetric monoidal natural transformation|symmetric monoidal natural transformations]] as morphisms. \end{itemize} \end{defn} Note that all of the above definitions can be [[enriched category|enriched]] over a [[symmetric monoidal category]] which yields the notion of enriched PROPs. For instance, we can have [[simplicially enriched category|simplicial]] and [[topologically enriched category|topological]] PROPs where the sets of morphisms are [[simplicial sets]] or [[topological spaces]]. \hypertarget{model_structure_on_simplicial_props}{}\subsection*{{Model Structure on Simplicial PROPs}}\label{model_structure_on_simplicial_props} First, in the case that we are working only with simplicial PROPs with a fixed set of colors (or, in other words, PROPs whose free monoids of objects all have the same generators), we have the following theorem of \hyperlink{HR2}{HR2}: \begin{prop} \label{}\hypertarget{}{} There is a cofibrantly generated model structure on the category of simplicial PROPs with a fixed set of colors in which a morphism of simplicial PROPs $\phi:Q\to T$ is a weak equivalence (resp. fibration) if for each simplicial set of morphisms the induced map $Q(\vec{x},\vec{y})\to T(\vec{x},\vec{y})$ is also a weak equivalence (resp. fibration). \end{prop} Recall now that simplicial PROPs admit an obvious forgetful functor to [[categories]] that factors through [[simplicial categories]]. Denote this functor by $\pi_0\colon sPROP\to Cat$. Using this notation, we have (again from \hyperlink{HR2}{HR2}): \begin{prop} \label{}\hypertarget{}{} There is a cofibrantly generated model structure on the category of all simplicial PROPs where a morphism of PROPs $\phi\colon Q\to T$ is a weak equivalence (resp. fibration) if: \begin{itemize}% \item the induced morphism of mapping complexes $\phi_m\colon Q(\vec{x},\vec{y})\to T(\phi_c(\vec{x}),\phi_c(\vec{y}))$ is a weak equivalence (resp. [[Kan fibration]]) of simplicial sets, and \item the functor $\pi_0\colon\pi_0Q\to \pi_0T$ is a weak equivalence (resp. [[isofibration]]) of categories. \end{itemize} \end{prop} Note that the model structure on simplicial PROPs is \emph{not} the model structure on gets by lifting the model structure of [[(infinity,1)-operad|simplicial operads]] along the free forgetful adjunction between simplicial operads and simplicial PROPs. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{bialgebras}{}\subsubsection*{{Bialgebras}}\label{bialgebras} A perhaps paradigmatic example is that there is a $Vect$-enriched prop whose algebras are bialgebras. It should be observed here that there is no $Vect$-enriched [[operad]] (or cooperad) whose algebras are bialgebras, so this is a genuine example that illustrates a gain in generality of props over operads. See \hyperlink{Pirashvili}{Pirashvili} for some more details on this prop. \hypertarget{endomorphism_prop}{}\subsubsection*{{Endomorphism PROP}}\label{endomorphism_prop} Given a set of colors $\mathfrak{C}$ and a [[closed category|closed]] [[symmetric monoidal category]] $E$ with a chosen collection of objects $\mathbf{X}=\{X_c\}_{c\in\mathfrak{C}}$, there is an $E$-enriched PROP $End_{\mathbf{X}}$ with morphism $E$-mapping spaces $End_{\mathbf{X}}(\{X_i\},\{Y_j\})=E(\otimes_i X_i,\otimes_j Y_j)$. \hypertarget{relation_to_polycategories}{}\subsection*{{Relation to Polycategories}}\label{relation_to_polycategories} Every PROP defines a [[polycategory]]; see there for more. PROPs can compose along many objects at once, whereas polycategories compose along a single object. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[PRO]] \item [[polycategory]] \item [[properad]] \item [[dioperad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wee Liang Gan, \emph{Koszul Duality for Dioperads}, \href{http://arxiv.org/abs/math/0201074}{(arXiv:0201074v2)}. \end{itemize} \begin{itemize}% \item [[Philip Hackney]] and [[Marcy Robertson]], \emph{On the Category of PROPs}, \href{http://arxiv.org/pdf/1207.2773v2.pdf}{arXiv:1207.2773v2}. \item [[Philip Hackney]] and [[Marcy Robertson]], \emph{The Homotopy Theory of Simplicial PROPs}, \href{http://arxiv.org/pdf/1209.1087.pdf}{arXiv:1209.1087}. \item [[Steve Lack]], \emph{\href{http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html}{Composing PROPs}}, [[TAC]] 13 (2004), No. 9, 147--163. \item Teimuraz Pirashvili, \emph{On the PROP corresponding to bialgebras}, http://arxiv.org/abs/math/0110014. (\href{http://arxiv.org/abs/math/0110014}{link}) \item [[Donald Yau]], \emph{Higher dimensional algebras via colored PROPs}, \href{http://arxiv.org/pdf/0809.2161v1.pdf}{(arXiv:0809.2161v1)}. \item M. Markl, S. Merkulov, S. Shadrin, \emph{Wheeled PROPs, graph complexes and the master equation}, J. Pure Appl. Algebra, 213(4):496–535, 2009, \href{https://arxiv.org/abs/math/0610683}{math.AT/0610683} \end{itemize} [[!redirects PROP]] [[!redirects PROPs]] [[!redirects prop]] [[!redirects props]] \end{document}