\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Peierls bracket} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_peirls_bracket}{The Peirls bracket}\dotfill \pageref*{the_peirls_bracket} \linebreak \noindent\hyperlink{the_offshell_peierls_bracket}{The off-shell Peierls bracket}\dotfill \pageref*{the_offshell_peierls_bracket} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Peierls bracket} (\hyperlink{Peierls52}{Peierls 52}) is equivalently the canonical [[symplectic manifold|symplectic]] [[Poisson bracket]] on the [[covariant phase space]] of [[field theories]] such as of the [[scalar field]] (\hyperlink{DutschFredenhagen01}{D\"u{}tsch-Fredenhagen 01}, \hyperlink{Khavkine14}{Khavkine 14}, \hyperlink{Collini16}{Collini 16, prop. 31 and below}). Its construction requires the linearized [[field (physics)|field]] [[equations of motion]] satisfied by the [[gauge invariance|gauge invariant]] fields to have unique [[retarded and advanced Green functions]]. Moreover, it extends ``off shell'' from the [[phase space]] to the space of all field configurations (\hyperlink{Marolf94}{Marolf 94}, \hyperlink{DuetschFredenhagen03}{D\"u{}tsch-Fredenhagen 03, section 2.1}, \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, section 5}), where however it is only [[Poisson bracket]], no longer [[symplectic manifold|symplectic]]. For more on this aspect see at \emph{[[off-shell Poisson bracket]]}. The [[Peierls bracket]] of two suitably [[smooth function|smooth]] [[functions]] $A$ and $B$ on [[field (physics)|field]] configuration space is the antisymmetrized influence on $B$ of an [[infinitesimal object|infinitesimal]] perturbation of a [[gauge fixing|gauge-fixed]] [[action]] by a function that restricts to $A$ on the embedding of the space of solutions in the field configuration space. It is the construction of the influence of $A$ on $B$ that requires the existence of unique retarded and advanced [[Green's functions]] of the linearized field equations. One can avoid [[gauge fixing]] the action, as long as $A$ and $B$ are [[gauge invariance|gauge invariant]] [[observables]]. In that case, unique retarded and advanced Green's functions may not exist, but due to the gauge invariance of $A$ and $B$ any representative of the gauge equivalence class of Green's functions with appropriate causal [[support]]. Since gauge invariant observables can be expressed in terms of gauge invariant fields (at least at the linearized level, which is all that matters in the construction) the existence and uniqueness of such equivalence classes of Green's functions is equivalent to the existence and uniqueness of retarded and advanced Green's functions for the linearized field equations satisfied by gauge invariant field combinations. For example, in [[electrodynamics]], advanced and retarded Green's functions exist on [[globally hyperbolic spacetimes]] for [[Maxwell equations]] in terms of the [[field strength]] $F=\mathbf{d}A$ and correspond to unique gauge equivalence classes of Green's functions for Maxwell equations in terms of the [[vector potential]] $A$. The [[algebra of functions]] on the space of field configurations becomes a [[Poisson algebra]] in the following way. Pick a set of functions on the space of field configurations that restrict to a non-degeneratce [[coordinate system]] on the embedded [[covariant phase space]]. These functions, together with the [[equations of motion]] and [[gauge fixing]] conditions define a [[Poisson bivector]] by being declared canonical, such that the [[kernel]] of the bivector coincides with the ideal generated by the [[equations of motion]] and the [[gauge fixing]] conditions. Obviously the Poisson structure thus constructed on the algebra of functions on field configurations is not unique and depends on the above choice of coordinates; the same non-uniqueness may be parametrized instead by a choice of a [[connection on a bundle|connection]] on the space of field configurations. The embedded [[covariant phase space]] becomes a [[symplectic leaf]] of the symplectic [[foliation]] of the space of field configurations. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{the_peirls_bracket}{}\subsubsection*{{The Peirls bracket}}\label{the_peirls_bracket} \begin{quote}% under construction \end{quote} \begin{defn} \label{PeirlsFormula}\hypertarget{PeirlsFormula}{} (\ldots{}) \ldots{}suitable PDE with advanced/retarded [[Green's function]] $\Delta_S^{A/R}$, then the \emph{causal Gree's function} is their difference \begin{displaymath} \Delta_S \coloneqq \Delta_S^{R} - \Delta_S^A \end{displaymath} (\ldots{}) \end{defn} (\hyperlink{Khavkine14}{\#Khavkine 14, def. 3.9}) \hypertarget{the_offshell_peierls_bracket}{}\subsubsection*{{The off-shell Peierls bracket}}\label{the_offshell_peierls_bracket} The idea of (\hyperlink{Marolf93}{Marolf 93}, section II) is this: If $\{q(0), p(0)\}$ is the given (symplectic) Poisson bracket on the space of solutions, identified with the space of initial data, then requiring that everything Poisson-commutes with $EL(S)$, the [[Euler-Lagrange equation|Euler-Lagrange functional]] of the action, uniquely extends this to a bracket $\{q(t_1), p(t_2)\}$ on all hisories, because commutation with $EL(S)$ involves generation of time translation. Here $EL(S)$ generates a Poisson ideal and dividing that out reproduces the original symplectic bracket. Now observe (Khavkine 1) that $EL(S)$ provides a foliation of history space by [[symplectic leaves]]. Because under the replacement $EL(S) \mapsto EL(S) - const$ the above still goes through. Observe also (Khavkine 2) that $EL(S) - const = 0$ is the equations of motion for the origial action with a [[source]] term $J q$ added. Hence the off-shell Peierls Poisson structure has [[symplectic leaves]] parameterized by the [[source]] $J$. Observe finally (Khavkine 3) that with (\hyperlink{Marolf93}{Marolf 93, section III B}) it follows that the Peierls bracket on the shifted leaves agrees with the original one. (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{PeierlsPoissonBracket}\hypertarget{PeierlsPoissonBracket}{} \textbf{(Peierls bracket is the canonical Poisson bracket in field theory)} Given a [[local Lagrangian field theory]], assume that its [[gauge symmetries]] are globally recognizable (\hyperlink{Khavkine14}{Khavkine 14, section 3.2.2}). Then the Peierls bracket (def. \ref{PeirlsFormula}) is the [[Poisson bracket]] corresponding to the [[symplectic form]] on the [[reduced phase space|reduced]] [[covariant phase space]]. \end{prop} (\hyperlink{Khavkine14}{Khavkine 14, theorem 3.2}) \hypertarget{references}{}\subsection*{{References}}\label{references} The definition of what now is called the Peierls bracket originates in \begin{itemize}% \item R. Peierls, \emph{The commutation laws of relativistic field theory} (1952) (\href{http://www.jstor.org/pss/99080}{jstor}) \end{itemize} In this article the Peierls bracket on the [[covariant phase space]] of a [[gauge theory|non-gauge]] system is defined and the equivalence with the Hamiltonian phase space [[symplectic structure]] is (incompletely) demonstrated. Peierls also discusses how the definition extends to gauge theories and to fermionic theories. An early review is in \begin{itemize}% \item [[Bryce DeWitt]], \emph{The Spacetime Approach to Quantum Field Theory}, in [[Bryce DeWitt]], [[Raymond Stora]] (eds.), \emph{Les Houches Session XL, Relativity, Groups and Topology II} (North-Holland, 1983), pp. 382--738. \end{itemize} which is also the first to explicitly check the [[Jacobi identity]] for the Peirls bracket. A streamlined general account is in \begin{itemize}% \item [[Igor Khavkine]], \emph{Covariant phase space, constraints, gauge and the Peierls formula}, Int. J. Mod. Phys. A, 29, 1430009 (2014) (\href{https://arxiv.org/abs/1402.1282}{arXiv.1402.1282}) \end{itemize} A traditional physics textbook account amplifying the Peierls bracket is \begin{itemize}% \item [[Bryce DeWitt]], \emph{The global approach to Quantum Field Theory} (2 volumes), Oxford 2003 \end{itemize} The fact that the Peirls bracket for the [[scalar field]] gives the [[Poisson bracket]] in its [[covariant phase space]] is discussed in \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative algebraic field theory, and deformation quantization}, in [[Roberto Longo]] (ed.), \emph{Mathematical Physics in Mathematics and Physics, Quantum and Operator Algebraic Aspects}, volume 30 of Fields Institute Communications, pages 151--160. American Mathematical Society, 2001 (\href{https://arxiv.org/abs/hep-th/0101079}{arXiv:hep-th/0101079}) \item [[Giovanni Collini]], prop. 31 and below in \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \end{itemize} The off-shell generalization to a [[Poisson bracket]] on configuration space (history space) was first given in \begin{itemize}% \item [[Don Marolf]], \emph{Poisson Brackets on the Space of Histories} Annals of Physics Volume 236, Issue 2, December 1994, Pages 374-391 (\href{http://arxiv.org/abs/hep-th/9308141}{arXiv:hep-th/9308141}) \item [[Don Marolf]], \emph{The Generalized Peierls Bracket}. Ann. Phys. (N.Y.) 236 (1994) 392--412 (\href{http://arxiv.org/abs/hep-th/9308150}{arXiv:hep-th/9308150}) \end{itemize} See also exercise 17.12 in \begin{itemize}% \item [[Marc Henneaux]], [[Claudio Teitelboim]], \emph{[[Quantization of Gauge Systems]]} \end{itemize} A mathematically clean account of the (on- and off-shell) Peierls bracket (for [[scalar fields]]) is in section 2.1 of \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory}, Commun.Math.Phys. 243 (2003) 275-314 (\href{http://arxiv.org/abs/hep-th/0211242}{arXiv:hep-th/0211242}) \end{itemize} and in section 2 of \begin{itemize}% \item Ferdinand Brennecke, [[Michael Dütsch]], \emph{Removal of violations of the Master Ward Identity in perturbative QFT}, Rev.Math.Phys.20:119-172,2008 (\href{http://arxiv-web3.library.cornell.edu/abs/0705.3160}{arXiv:0705.3160}) \end{itemize} there with an eye towards the [[renormalization]] program of [[perturbative quantum field theory|perturbative Algebraic Quantum Field Theory]] (pAQFT) on flat and [[AQFT on curved spacetimes|on curved spacetimes]]. \begin{itemize}% \item [[Michael Dütsch]] and [[Klaus Fredenhagen]], \emph{Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity}, Rev. Math. Phys. 16 (2004) 1291-1348 (\href{http://arxiv.org/abs/hep-th/0403213}{arXiv:hep-th/0403213}) \end{itemize} Further references to its use in the renormalization program of pAQFT can be found in: \begin{itemize}% \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], \emph{Batalin-Vilkovisky formalism in the functional approach to classical field theory}. Commun.Math.Phys. 314 (2012) 93-127 (\href{http://arxiv.org/abs/1101.5112}{arXiv:1101.5112}) \end{itemize} Functional analytic aspects of the definition and existence of the Peierls bracket (including its off-shell extension) are discussed in section 3.2 of \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], [[Pedro Ribeiro]], \emph{Algebraic Structure of Classical Field Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields} (\href{http://arxiv.org/abs/1209.2148}{arXiv:1209.2148}) \end{itemize} The equivalence between the Peierls bracket and the [[symplectic manifold|symplectic]] [[Poisson bracket]] on the [[covariant phase space]] of classical field theory (by showing the equivalence of both to the canonical Poisson bracket in Hamiltonian formalism) was demonstrated in \begin{itemize}% \item [[Glenn Barnich]], [[Marc Henneaux]], C. Schomblond, \emph{Covariant description of the canonical formalism}. Phys.Rev. D44 (1991) R939-R941 (\href{http://dx.doi.org/10.1103/physrevd.44.r939}{doi}) \end{itemize} Further discussion of the manifestly covariant equivalence between the Peierls bracket and the [[symplectic manifold|symplectic]] [[Poisson bracket]] on the [[covariant phase space]] of classical field theory (avoiding traditional proof via the canonical Hamiltonian formalism) can be found in \begin{itemize}% \item [[Michael Forger]], Sandro Romero, \emph{Covariant Poisson Brackets in Geometric Field Theory}, Commun.Math.Phys. 256 (2005) 375-410 (\href{http://arxiv.org/abs/math-ph/0408008}{arXiv:math-ph/0408008}) \item [[Igor Khavkine]], \emph{Characteristics, Conal Geometry and Causality in Locally Covariant Field Theory}, section 5, (\href{http://arxiv.org/abs/1211.1914}{arXiv:1211.1914}) \end{itemize} [[!redirects Peierls brackets]] [[!redirects Peierls-Poisson bracket]] [[!redirects Peierls-Poisson brackets]] [[!redirects Poisson-Peierls bracket]] [[!redirects Poisson-Peierls brackets]] \end{document}