\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Picard scheme} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{representability}{Representability}\dotfill \pageref*{representability} \linebreak \noindent\hyperlink{PicardStack}{Picard Stack}\dotfill \pageref*{PicardStack} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a [[ringed space]] $(X, \mathcal{O}_X)$ there is its [[Picard group]] of [[invertible objects]] in the category of $\mathcal{O}_X$-[[modules]]. When $X$ is a [[projective morphism|projective]] [[integral scheme]] over $k$ the [[Picard group]] underlies a $k$-scheme, this is the \emph{Picard scheme} $Pic_X$. This scheme varies in a family as $X$ varies in a family. From this starting point one can naturally generalize to more general relative situations. Often one considers just the connected component $Pic_X^0$ of the neutral element in $Pic_X$, and often (such as in the discussion below, beware) it is that connected component (only) which is referred to by ``Picard scheme''. The difference between the two is measured by the [[quotient]] $Pic_X/Pic_X^0$, which is called the \emph{[[Néron-Severi group]]} of $X$. Though at least for $X$ an [[algebraic curve]], $Pic_X^0$ goes by a separate name: it is the \emph{[[Jacobian variety]]} of $X$. The [[completion]] of the Picard scheme at its neutral element (hence either of $Pic_X$ or $Pic_X^0$) is the \emph{[[formal Picard group]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{Picard variety} of a complete [[smooth scheme|smooth]] algebraic [[variety]] $X$ over an [[algebraically closed field]] parametrizes the [[Picard group]] of $X$, more precisely the set of classes of isomorphic invertible [[quasicoherent sheaves]] with vanishing [[first Chern class]]. The \textbf{Picard scheme} is a scheme [[representable functor|representing]] the relative Picard functor $Pic_{X/S}: (Sch/S)^{op}\to Set$ by $T\mapsto Pic(X_T)/f^*Pic(T)$. In this generality the Picard functor has been introduced by [[Grothendieck]] in [[FGA]], along with the proof of representability. An alternate form of this functor (with respect to the Zariski topology) in terms of the [[derived functor]] of $f_*$ is $Pic_{X/S}(T)=H^0(T, R^1f_{T*}\mathcal{O}_{X_T}^*)$. Note we must work with the relative functor because the global Picard functor $Pic_X(T)=Pic(X_T)$ has no hope of being representable as it is not even a [[sheaf]]. Consider any non-trivial invertible sheaf in $Pic(X_T)$. This becomes trivial on some cover $\{T_i\to T\}$, so $Pic(X_T)\to \prod Pic(X_{T_i})$ is not injective. \hypertarget{representability}{}\subsection*{{Representability}}\label{representability} For this section suppose $f:X\to S$ is s [[separated morphism of schemes|separated]] map, [[finite type]] map of schemes. Many general forms of [[representable functor|representability]] have been proven several of which are given in \emph{[[FGA explained]]}. Here we list several of the common forms: \begin{itemize}% \item Suppose $\mathcal{O}_S\to f_*\mathcal{O}_X$ is universally an isomorphism (stays an [[isomorphism]] after any [[base change]]), then we have a comparison of relative Picard functors $Pic_{X/S}\hookrightarrow Pic_{X/S, zar}\hookrightarrow Pic_{X/S, et}\hookrightarrow Pic_{X/S, fppf}$. They are all isomorphisms if $f$ has a section. \item If $Pic_{X/S}$ is representable by a scheme, then by [[descent theory]] for sheaves it is representable by the same scheme in all the topologies listed above. In general, representability gives representability in a finer topology (of the ones listed). \item If $Pic_{X/S}$ is representable then a universal sheaf $\mathcal{P}$ on $X\times Pic_{X/S}$ is called a [[Poincaré sheaf]]. It is universal in the following sense: if $T\to S$ and $\mathcal{L}$ is invertible on $X_T$, then there is a unique $h:T\to Pic_{X/S}$ such that for some $\mathcal{N}$ invertible on $T$ we get $\mathcal{L}\simeq (1\times h)^*\mathcal{P}\otimes f_T^*\mathcal{N}$. \item If $f$ is (Zariski) [[projective morphism|projective]], [[flat morphism|flat]] with [[integral scheme|integral]] geometric fibers then $Pic_{X/S, et}$ is representable by a [[separated scheme|separated]] and [[morphism of finite type|locally of finite type]] scheme over $S$. \item Grothendieck's Generic Representability: If $f$ is [[proper morphism|proper]] and $S$ is [[integral scheme|integral]], then there is a nonempty open $V\subset S$ such that $Pic_{X_V/V, fppf}$ is representable and is a disjoint union of open [[quasi-projective scheme| quasi-projective]] subschemes. \item If $f$ is a flat, cohomologically flat in dimension 0, proper, [[finitely presented]] map of of [[algebraic space]]s, then $Pic_{X/S}$ is representable by an algebraic space locally of finite presentation over $S$. \end{itemize} \hypertarget{PicardStack}{}\subsection*{{Picard Stack}}\label{PicardStack} The \emph{[[Picard stack]]} $\mathcal{Pic}_{X/S}$ is the [[stack]] of invertible sheaves on $X/S$, i.e. the [[fiber category]] over $T\to X$ is the [[groupoid]] of [[line bundles]] on $X_T$ (not just their [[isomorphism classes]]). (Hence it is the [[Picard groupoid of a monoidal category|Picard groupoid]] equipped with geometric structure). If $X$ is proper and flat, then $\mathcal{Pic}_{X/S}$ is an [[Artin stack]] since $\mathcal{Pic}_{X/S}=\mathcal{Hom}(X, B\mathbb{G}_m)$ is the [[Hom stack]] which is Artin. Note the following ``failure'' of the relative Picard scheme: points on $Pic_{X/S}$ do not parametrize line bundles. The low degree terms of the Leray [[spectral sequence]] give the following exact sequence $H^1(X_T, \mathbb{G}_m)\to H^0(T, R^1f_*\mathbb{G}_m)\to H^2(T, \mathbb{G}_m)\to H^2(X_T, \mathbb{G}_m)$, but as noted above $Pic_{X/S}(T)=H^0(T, R^1f_*\mathbb{G}_m)$, so we see exactly when a $T$-point comes from a line bundle it is when that point maps to $0$ in this sequence. This gives us an obstruction theory lying in $H^2(T, \mathbb{G}_m)$ for a point corresponding to a line bundle. If $Pic_{X/S}$ is representable we could take $T=Pic_{X/S}$ to find a universal obstruction. Intuitively this is because the Picard stack is the right object to look at for the moduli problem of line bundles over $X$. The Picard scheme is the $\mathbb{G}_m$-[[rigidification]] of the Picard stack. The natural map $\mathcal{Pic}_{X/S}\to Pic_{X/S}$ is a $\mathbb{G}_m$-[[gerbe]]. But isomorphism classes of $\mathbb{G}_m$-gerbes over $T$ are in bijective correspondence with $H^2(T, \mathbb{G}_m)$ and so the above map could be thought of as a geometric realization of the universal obstruction class. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[dual abelian group scheme]] \item [[Poincaré line bundle]] \item [[Albanese variety]] \item [[Prym variety]] \end{itemize} [[!include moduli of higher lines -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Springer eom: \href{http://eom.springer.de/p/p072690.htm}{Picard variety}, \href{http://eom.springer.de/p/p072670.htm}{Picard scheme} \item wikipedia \href{http://en.wikipedia.org/wiki/Picard_group}{Picard group} \item [[Steven Kleiman|Steven L. Kleiman]], \emph{The Picard scheme}, pp. 235--321 in [[FGA explained]], MR2223410 (draft \href{http://cdsagenda5.ictp.it//askArchive.php?categ=a0255&id=a0255s6t3&ifd=15022&down=1&type=lecture_notes}{pdf}), \href{http://arxiv.org/abs/math/0504020}{arxiv} \item [[Akhil Mathew]], \emph{\href{http://amathew.wordpress.com/2013/03/19/the-picard-scheme-i/}{The Picard Scheme I}}, \emph{\href{http://amathew.wordpress.com/2013/03/19/the-picard-scheme-ii-deformation-theory/}{The Picard Scheme II: deformation theory}} \end{itemize} Specifically on the [[Picard stack]]: \begin{itemize}% \item [[The Stacks Project]], \emph{\href{http://stacks.math.columbia.edu/tag/0372}{The Picard stack}} \end{itemize} category: algebraic geometry [[!redirects Picard schemes]] [[!redirects Picard variety]] [[!redirects Picard varieties]] \end{document}