\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poincaré Lie algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{invariant_polynomials_and_chernsimons_elements}{Invariant polynomials and Chern-Simons elements}\dotfill \pageref*{invariant_polynomials_and_chernsimons_elements} \linebreak \noindent\hyperlink{lie_algebra_valued_forms}{Lie algebra valued forms}\dotfill \pageref*{lie_algebra_valued_forms} \linebreak \noindent\hyperlink{related_structures}{Related structures}\dotfill \pageref*{related_structures} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Poincar\'e{} Lie algebra} $\mathfrak{iso}(\mathbb{R}^{d-1,1})$ is the [[Lie algebra]] of the [[isometry group]] of [[Minkowski spacetime]]: the [[Poincaré group]]. This happens to be the [[semidirect product]] of the [[special orthogonal Lie algebra]] $\mathfrak{so}(d-1,1)$ with the the abelian translation Lie algebra $\mathbb{R}^{d-1,1}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $d \in \mathbb{N}$, write $\mathbb{R}^{d-1,1}$ for [[Minkowski spacetime]], regarded as the [[inner product space]] whose underlying [[vector space]] is $\mathbb{R}^d$ and equipped with the [[bilinear form]] given in the canonical [[linear basis]] of $\mathbb{R}^d$ by \begin{displaymath} \eta \coloneqq diag(-1,+1,+1, \cdots, +1) \,. \end{displaymath} The [[Poincaré group]] $Iso(\mathbb{R}^{d-1,1})$ is the [[isometry group]] of this inner product space. The \emph{Poincar\'e{} Lie algebra} $\mathfrak{iso}(\mathbb{R}^{d-1,1})$ is the [[Lie algebra]] of this [[Lie group]] (its [[Lie differentiation]]) \begin{displaymath} \mathfrak{iso}(\mathbb{R}^{d-1,1}) \coloneqq Lie(Iso(\mathbb{R}^{d-1,1})) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[Poincaré group]] is the [[semidirect product group]] \begin{displaymath} Iso(\mathbb{R}^{d-1,1}) \simeq \mathbb{R}^{d-1,1} \rtimes O(d-1,1) \end{displaymath} of the [[Lorentz group]] $O(d-1,1)$ (the group of [[linear map|linear]] [[isometries]] of [[Minkowski spacetime]]) with the $\mathbb{R}^d$ regarded as the [[translation group]] along itself, via the defining [[action]]. Accordingly, the Poincar\'e{} Lie algebra is the [[semidirect product Lie algebra]] \begin{displaymath} \mathfrak{iso}(\mathbb{R}^{d-1,1}) \simeq \mathbb{R}^{d-1,1} \rtimes \mathfrak{so}^+(d-1,1) \end{displaymath} of the abelian Lie algebra on $\mathbb{R}^d$ with the (orthochronous) [[special orthogonal Lie algebra]] $\mathfrak{so}(d-1,1)$. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $\{P_a\}$ the canonical [[linear basis]] of $\mathbb{R}^d$, and for $\{L_{a b} = - L_{b a}\}$ the corresponding canonical basis of $\mathfrak{so}(d-1,1)$, then the [[Lie bracket]] in $\mathfrak{iso}(\mathbb{R}^{d-1,1})$ is given as follows: \begin{displaymath} \begin{aligned} [P_a, P_b] & = 0 \\ [L_{a b}, L_{c d}] & = \eta_{d a} L_{b c} -\eta_{b c} L_{a d} +\eta_{a c} L_{b d} -\eta_{d b} L_{a c} \\ [L_{a b}, P_c] & = \eta_{a c} P_b -\eta_{bc} P_a \end{aligned} \end{displaymath} \end{prop} \begin{proof} Since [[Lie differentiation]] sees only the [[connected component]] of a [[Lie group]], and does not distinguish betwee a Lie group and any of its discrete [[covering spaces]], we may equivalently consider the Lie algebra of the [[spin group]] $Spin(d-1,1) \to SO^+(d-1,1)$ (the double cover of the [[proper orthochronous Lorentz group]]) and its [[action]] on $\mathbb{R}^{d-1,1}$. By the discussion at \emph{[[spin group]]}, the Lie algebra of $Spin(d-1,1)$ is the Lie algebra spanned by the [[Clifford algebra]] [[bivectors]] \begin{displaymath} L_{a b} \leftrightarrow \Gamma_a \Gamma_b \end{displaymath} and its [[action]] on itself as well as on the vectors, identified with single Clifford generators \begin{displaymath} P_a \leftrightarrow \Gamma_a \end{displaymath} is given by forming [[commutators]] in the [[Clifford algebra]]: \begin{displaymath} [L_{a b}, P_c] \leftrightarrow \tfrac{1}{2}[\Gamma_{a b}, \Gamma_c ] \end{displaymath} \begin{displaymath} [L_{a b}, L_{c d}] \leftrightarrow \tfrac{1}{2}[\Gamma_{a b}, \Gamma_{c d} ] \,. \end{displaymath} Via the Clifford relation \begin{displaymath} \Gamma_a \Gamma_b + \Gamma_b \Gamma_a = -2 \eta_{a b} \end{displaymath} this yields the claim. \end{proof} \begin{remark} \label{}\hypertarget{}{} Dually, the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{iso}(\mathbb{R}^{d-1})$ is generated from $\mathbb{R}^{d,1}$ and $\wedge^2 \mathbb{R}^{d,1}$. For $\{t_a\}$ the standard basis of $\mathbb{R}^{d-1,1}$ we write $\{\omega^{a b}\}$ and $\{e^a\}$ for these generators. With $(\eta_{a b})$ the components of the [[Minkowski metric]] we write \begin{displaymath} \omega^{a}{}_b \coloneqq \omega^{a c}\eta_{c b} \,. \end{displaymath} In terms of this the CE-differential that defines the Lie algebra structure is \begin{displaymath} d_{CE} \colon \omega^{a b} = \omega^a{}_c \wedge \omega^{c b} \end{displaymath} \begin{displaymath} d_{CE} \colon e^a \mapsto \omega^{a}{}_b \wedge t^b \end{displaymath} \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} We discuss some elements in the [[Lie algebra cohomology]] of $\mathfrak{iso}(d-1,1)$. The canonical degree-3 $\mathfrak{so}(d-1,1)$-cocycle is \begin{displaymath} \omega^a{}_b \wedge \omega^b{}_c \wedge \omega^c{}_a \in CE(\mathfrak{iso}(d-1,1)) \,. \end{displaymath} The \emph{volume cocycle} is the [[volume form]] \begin{displaymath} vol = \epsilon_{a_1 \cdots a_{d}} e^{a_1} \wedge \cdots \wedge e^{a_d} \in CE(\mathfrak{iso}(d-1,1)) \,. \end{displaymath} \hypertarget{invariant_polynomials_and_chernsimons_elements}{}\subsubsection*{{Invariant polynomials and Chern-Simons elements}}\label{invariant_polynomials_and_chernsimons_elements} With the basis elements $(e^a, \omega^{a b})$ as above, denote the shifted generators of the [[Weil algebra]] $W(\mathfrak{iso}(d-1,1))$ by $\theta^a$ and $r^{a b}$, respectively. We have the [[Bianchi identity]] \begin{displaymath} d_W : r^{a b} \mapsto \omega^{a c} \wedge R_c{}^d - R^{a c} \wedge \omega_c{}^b \end{displaymath} and \begin{displaymath} d_W : \theta^a \mapsto \omega^a{}_b \theta^b - R^{a}{}_b e^b \,. \end{displaymath} The element $\eta_{a b} \theta^a \wedge \theta^b \in W(\mathfrak{iso}(d-1,1))$ is an [[invariant polynomial]]. A [[Chern-Simons element]] for it is $cs = \eta_{a b} e^a \wedge \theta^b$. So this transgresses to the trivial cocycle. Another invariant polynomial is $r^{a b} \wedge r_{a b}$. This is the [[Killing form]] of $\mathfrak{so}(d-1,1)$. Accordingly, it transgresses to a multiple of $\omega^a{}_b \wedge \omega^b{}_c \wedge \omega^c{}_a$. This is the first in an infinite series of Pontryagin invariant polynomials \begin{displaymath} P_n := r^{a_1}{}_{a_2} \wedge r^{a_2}{}_{a_3} \wedge \cdots \wedge r^{a_n}{}_{a_1} \,. \end{displaymath} There is also an infinite series of mixed invariant polynomials \begin{displaymath} C_{2n + 2} := \theta_{a_1} \wedge r^{a_1}{}_{a_2} \wedge r^{a_2}{}_{a_3} \wedge \cdots \wedge r^{a_{n-1}}{}_{a_n} \wedge \theta^{a_n} \,. \end{displaymath} [[Chern-Simons element]]s for these are \begin{displaymath} B_{2n + 1} := \theta_{a_1} \wedge r^{a_1}{}_{a_2} \wedge r^{a_2}{}_{a_3} \wedge \cdots \wedge r^{a_{n-1}}{}_{a_n} \wedge e^{a_n} \,. \end{displaymath} \hypertarget{lie_algebra_valued_forms}{}\subsubsection*{{Lie algebra valued forms}}\label{lie_algebra_valued_forms} A [[Lie algebra-valued form]] with values in $\mathfrak{iso}(d-1,1)$ \begin{displaymath} \Omega^\bullet(X) \leftarrow W(\mathfrak{iso}(d-1,1)) : (E,\Omega) \end{displaymath} is \begin{itemize}% \item a [[vielbein]] $E$ on $X$; \item a ``[[spin connection]]'' $\Omega$ on $X$. \end{itemize} The [[curvature]] 2-form $(T, R)$ consists of \begin{itemize}% \item the [[torsion of a metric connection|torsion]] $T = d E + [\Omega \wedge E]$; \item the [[Riemannian curvature]] $R = d \Omega + [\Omega \wedge \Omega]$. \end{itemize} If the torsion vanishes, then $\Omega$ is a [[Levi-Civita connection]] for the [[metric]] $E^a \otimes E^b \eta_{a b}$ defined by $E$. The [[volume form]] is the image of the \hyperlink{VolumeCocycle}{volume cocycle} \begin{displaymath} \Omega^\bullet(X) \stackrel{(E,\Omega)}{\leftarrow} W(\mathfrak{iso}(d-1,1)) \stackrel{vol}{\leftarrow} W(b^{d-1} \mathbb{R}) : vol(E) \,. \end{displaymath} We have \begin{displaymath} vol(E) = \epsilon_{a_1 \cdots a_d} E^{a_1} \wedge \cdots \wedge E^{a_d} \,. \end{displaymath} If the torsion vanishes, this is indeed a closed form. \hypertarget{related_structures}{}\subsection*{{Related structures}}\label{related_structures} \begin{itemize}% \item [[special orthogonal Lie algebra]] \item [[super Poincaré Lie algebra]] \end{itemize} [[!redirects Poincaré Lie algebras]] [[!redirects Poincare Lie algebra]] [[!redirects Poincaré Lie algebra]] \end{document}