\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poincaré conjecture - diagrammatic formulation} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{kirby_equivalence}{Kirby equivalence}\dotfill \pageref*{kirby_equivalence} \linebreak \noindent\hyperlink{fundamental_theorems_on_3manifolds}{Fundamental theorems on 3-manifolds}\dotfill \pageref*{fundamental_theorems_on_3manifolds} \linebreak \noindent\hyperlink{fundamental_group_of_a_link_diagram}{Fundamental group of a link diagram}\dotfill \pageref*{fundamental_group_of_a_link_diagram} \linebreak \noindent\hyperlink{longitude_of_the_component_of_a_link_diagram}{Longitude of the component of a link diagram}\dotfill \pageref*{longitude_of_the_component_of_a_link_diagram} \linebreak \noindent\hyperlink{diagrammatic_formulation_of_the_poincar_conjecture}{Diagrammatic formulation of the Poincar\'e{} conjecture}\dotfill \pageref*{diagrammatic_formulation_of_the_poincar_conjecture} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} The Poincae conjecture can be re-formulated as a conjecture concerning link diagrams. After recalling some preliminaries, we present this diagrammatic formulation. \hypertarget{kirby_equivalence}{}\subsection*{{Kirby equivalence}}\label{kirby_equivalence} The \emph{framed Reidemeister moves} on a link diagram are depicted [[framed\_reidemeister\_moves.pdf|here:file]]. The \emph{Kirby moves} on a link diagram are depicted [[kirby\_moves.pdf|here:file]]. A pair of link diagrams are \emph{Kirby equivalent} if there is a finite sequence of framed Reidemeister moves and Kirby moves taking one to the other. \hypertarget{fundamental_theorems_on_3manifolds}{}\subsection*{{Fundamental theorems on 3-manifolds}}\label{fundamental_theorems_on_3manifolds} We shall rely on the following fundamental theorems, which allow for a diagrammatic approach to the Poincar\'e{} conjecture. \begin{uthm} Let $M$ be a closed, connected, orientable 3-manifold. There is a link diagram $L$ such that $M$ is isomorphic to the 3-manifold obtained by the integral Dehn surgery on $L$ in $S^{3}$ with respect to the blackboard framing of $L$. \end{uthm} \begin{uthm} Let $M_{0}$ and $M_{1}$ be closed, connected, orientable 3-manifolds. Let $L_{0}$ (respectively $L_{1}$) be a link diagram such that the 3-manifold obtained by the integral Dehn surgery on $L_{0}$ (respectively $L_{1}$) in $S^{3}$ with respect to the blackboard framing of $L_{0}$ (respectively $L_{1}$). Then $M_{0}$ is isomorphic to $M_{1}$ if and only if $L_{0}$ and $L_{1}$ are Kirby equivalent. \end{uthm} \hypertarget{fundamental_group_of_a_link_diagram}{}\subsection*{{Fundamental group of a link diagram}}\label{fundamental_group_of_a_link_diagram} Let $L$ be a link diagram, with some choice of orientation. We denote the free group on the arcs of $L$ by $F(L)$. We define $\pi_{1}(L)$, the fundamental group of $L$, to be the quotient of $F(L)$ by the normal subgroup generated by words of the form $a_3^{-1} a_2^{-1} a_1^{-1} a_2$, for any crossing of $L$ as depicted [[labelled\_crossing.pdf|here:file]], irrespective of the orientation of the horizontal arcs. \hypertarget{longitude_of_the_component_of_a_link_diagram}{}\subsection*{{Longitude of the component of a link diagram}}\label{longitude_of_the_component_of_a_link_diagram} Let $L$ be a link diagram, with some choice of orientation. The longitude of a component of $L$ is defined to be the word $w$ which we obtain after carrying out the following procedure. \begin{enumerate}% \item Pick any arc of $L$, say $a$. Let $w$ be the empty word. \item Walk around $L$, following the orientation. When we walk under an arc $b$, whether or not $b$ belongs to same component of $L$ or a different one, we add $b$ to the end of $w$ if the configuration of orientations at the crossing is as depicted in the first figure [[longitude.pdf|here:file]], and add $b^{-1}$ to the end of $w$ if the configuration of orientations at the crossing is as depicted in the second figure [[longitude.pdf|here:file]]. \item Stop when we return to the arc we started with, namely $a$. \end{enumerate} The following is a consequence of the van Kampen theorem. \begin{uprop} Let $M$ be a closed, connected, orientable 3-manifold. Let $L$ be a link diagram such that the 3-manifold obtained by the integral Dehn surgery on $L$ in $S^{3}$ with respect to the blackboard framing of $L$ is isomorphic to $M$. Then the group $\pi_{1}(M)$ is isomorphic to the group $\pi_{1}(L) / \langle l_1, \ldots, l_n \rangle$, where $l_1$, $\ldots$, $l_{n}$ are the longitudes of the components of $L$, and $\langle l_1, \ldots, l_n \rangle$ is the normal subgroup generated by these. \end{uprop} \hypertarget{diagrammatic_formulation_of_the_poincar_conjecture}{}\subsection*{{Diagrammatic formulation of the Poincar\'e{} conjecture}}\label{diagrammatic_formulation_of_the_poincar_conjecture} Let $M$ be a closed, connected $3$-manifold. The \emph{Poincar\'e{} conjecture} is that if $\pi_{1}(M)$ is trivial (that is to say, isomorphic to a group with one element), then $M$ is isomorphic to $S^{3}$. If $\pi_{1}(M)$ is trivial, then $M$ is orientable. It thus follows from the Lickorish-Wallace theorem, the Kirby theorem, the preceding proposition, and the fact that integral Dehn surgery on the empty link diagram gives $S^{3}$, that the Poincar\'e{} conjecture is equivalent to the following: if a link diagram $L$ has the property that the group $\pi_{1}(L) / \langle l_1, \ldots, l_n \rangle$ is trivial, then $L$ is Kirby equivalent to the empty link diagram. \end{document}