\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poincaré duality algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForGradedCommutativeAlgebras}{For graded-commutative algebras}\dotfill \pageref*{ForGradedCommutativeAlgebras} \linebreak \noindent\hyperlink{ForCStarAlgebras}{For $C^\ast$-algebras}\dotfill \pageref*{ForCStarAlgebras} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{for_dgalgebras}{For dg-Algebras}\dotfill \pageref*{for_dgalgebras} \linebreak \noindent\hyperlink{PropertiesForCStarAlgebras}{For $C^\ast$-algebras}\dotfill \pageref*{PropertiesForCStarAlgebras} \linebreak \noindent\hyperlink{PropertiesCAstDualsAndTwists}{Duals and twists}\dotfill \pageref*{PropertiesCAstDualsAndTwists} \linebreak \noindent\hyperlink{PropertiesKOrientationAndUmkehrMaps}{K-Orientation and Umkehr maps}\dotfill \pageref*{PropertiesKOrientationAndUmkehrMaps} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{for_graded_associative_algebras}{For graded associative algebras}\dotfill \pageref*{for_graded_associative_algebras} \linebreak \noindent\hyperlink{for_algebras_3}{For $C^\ast$-algebras}\dotfill \pageref*{for_algebras_3} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generally, a \emph{Poincar\'e{} duality dg-algebra} is a [[dg-algebra]] with structure mimicking [[Poincaré duality]] in [[ordinary cohomology]]. On the other hand a \emph{Poincar\'e{} duality $C^\ast$-algebra} is a [[C\emph{-algebra]] which represents a [[space]] in [[noncommutative topology]] for which there is a sensible notion of [[Poincaré duality]] in [[K-theory]] ([[operator K-theory]]/[[K-homology]]).} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ForGradedCommutativeAlgebras}{}\subsubsection*{{For graded-commutative algebras}}\label{ForGradedCommutativeAlgebras} \begin{defn} \label{}\hypertarget{}{} The structure of a Poincar\'e{} duality algebra in [[dimension]] $n$ on a graded-commutative [[graded vector space|graded]] [[associative algebra]] $A$ is a [[linear function]] $\epsilon \colon A_n \to k$ to the ground field such that all the induced [[bilinear forms]] \begin{displaymath} A_k \otimes A_{n-k} \stackrel{\otimes}{\to} A^n \stackrel{\epsilon}{\to} k \end{displaymath} are non-degenerate. \end{defn} e.g. (\hyperlink{LambrechstStanley07}{Lambrechst-Stanley 07}) \hypertarget{ForCStarAlgebras}{}\subsubsection*{{For $C^\ast$-algebras}}\label{ForCStarAlgebras} For [[C\emph{-algebras]] hence in [[noncommutative topology]] there is the following notion of Poincar\'e{} duality, which is really Poincar\'e{} with respect not to [[ordinary cohomology]] but [[K-theory]] ([[operator K-theory]]).} We start with the definition of Poincar\'e{} \emph{self}-duality and then generalize to Poincar\'e{} dual pairs. \begin{defn} \label{PDAlgebra}\hypertarget{PDAlgebra}{} A [[separable C\emph{-algebra]] $A \in$ [[C}Alg]] is a \textbf{Poincar\'e{} duality algebra} (or \emph{PD algebra}, for short ) if it is [[dualizable object]] when regarded as an object of the [[KK-theory]]-category, with [[dual object]] its [[opposite algebra]]. The element $\Delta$ in def. \ref{PDAlgebra} is called a \textbf{[[fundamental class]]} of $A$. \end{defn} This appears as (\hyperlink{BMRS07}{BMRS 07, def. 2.1}, following \hyperlink{Connes}{Connes, p. 601}) following (\hyperlink{Connes}{Connes}). \begin{remark} \label{}\hypertarget{}{} Explicitly def. \ref{PDAlgebra} says that $A$ is a PD algebra if there exists $\Delta \in KK(A \otimes A^{op}, \mathbb{C})$ and $\Delta^\vee \in KK(\mathbb{C}, A \otimes A^{op})$ such that \begin{displaymath} \Delta^\vee \otimes_{A^{op}} \Delta = id_A \in KK(A,A) \end{displaymath} and \begin{displaymath} \Delta^\vee \otimes_A \Delta = id_{A^{op}} \in KK(A^{op}, A^{op}) \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} For $A$ $B$ two Poincar\'e{} duality algebras, def. $\backslash$ref\{PDAlgebra\}, and for $f \colon A \to B$ a [[homomorphism]] between them, regarded as a morphism $f^\ast \colon B \to A$ in [[KK-theory]], the correspondung [[dual morphism]] $f! \colon A \to B$ is the one such that postcomposition in $KK$ with this corresponds to the [[Umkehr map]]/[[push forward in generalized cohomology]] in [[KK-theory]]. \end{prop} For more on this see below at \emph{\hyperlink{PropertiesKOrientationAndUmkehrMaps}{Properties -- K-Orientation and Umkehr mpas}}. \begin{remark} \label{OppositeConvolutionAlgebraAndInverseTwist}\hypertarget{OppositeConvolutionAlgebraAndInverseTwist}{} For $C^\ast$-algebras which are [[groupoid convolution algebras]] $C^\ast(\mathcal{G})$ the [[opposite algebra]] is [[Morita equivalence|Morita equivlant]] (since a [[groupoid]] $\mathcal{G}$ is [[equivalence of categories|equivalent]] to its [[opposite category|opposite groupoid]] $\mathcal{G}^{op}$, the equivalence being induced by the [[functor]] which sends a morphism to its [[inverse]]). But given a [[circle 2-bundle]] $\chi \colon \mathcal{G} \to \mathbf{B}^2 U(1)$ the corresponding [[twisted groupoid convolution algebra]] is such that passing to the opposite corresponds to passing to the inverse twist $-\chi$. \end{remark} Therefore it makes sense to consider more generally \begin{defn} \label{}\hypertarget{}{} For $A$ a [[C\emph{-algebra]] a \emph{Poincar\'e{} dual} for $A$ is a [[dual object]] $B \in C^\ast Alg \to KK$ in [[KK-theory]].} \end{defn} Below in the \hyperlink{PropertiesForCStarAlgebras}{Proposition-Section} is discussed how under Poincar\'e{}-duality the [[twisted K-theory|twist]] changes. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{for_dgalgebras}{}\subsubsection*{{For dg-Algebras}}\label{for_dgalgebras} \hypertarget{PropertiesForCStarAlgebras}{}\subsubsection*{{For $C^\ast$-algebras}}\label{PropertiesForCStarAlgebras} \hypertarget{PropertiesCAstDualsAndTwists}{}\paragraph*{{Duals and twists}}\label{PropertiesCAstDualsAndTwists} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[closed manifold]] with [[spin{\tt \symbol{94}}c-structure]]. Then there is a Poincar\'e{} duality [[isomorphism]] \begin{displaymath} K^\bullet(X) \simeq K_\bullet(X) \,. \end{displaymath} \end{prop} For instance (\hyperlink{Connes}{Connes, chapter 2.7, prop. 5}). (\ldots{}) The relaton between Poincar\'e{} duality on algebras of functions and [[spin{\tt \symbol{94}}c-structure]] is discussed in (\hyperlink{Connes}{Connes, around p. 603}). (\ldots{}) Notice that the [[obstruction]] to [[spin{\tt \symbol{94}}c structure]] is the third [[integral Stiefel-Whitney class]] $W_3 \colon B SO \to B^2 U(1)$. If this does not vanish on a [[manifold]], then a Poincar\'e{} dual/[[dual object]] in [[KK-theory]] still exists, but is the same manifold equipped with a [[twisted K-theory|twist]] \emph{shifted} by $W_3(\tau_X)$, where $\tau_X$ denotes the ([[cotangent bundle|co]])[[tangent bundle]] of $X$. \begin{defn} \label{CStarAlgebraOf2BundleOnManifold}\hypertarget{CStarAlgebraOf2BundleOnManifold}{} For $X$ a ([[compact topological space|compact]]) [[manifold]] and $c \in H^3(X,\mathbb{Z})$ the class of a [[circle 2-bundle]]/[[bundle gerbe]] $\mathcal{G}$ on $X$, write \begin{displaymath} C_c(X) \in C^\ast Alg \to KK \end{displaymath} for the corresponding [[twisted groupoid convolution algebra]], the one whose [[operator K-theory]] is the $c$-[[twisted K-theory]] of $X$: \begin{displaymath} KK_\bullet(\mathbb{C}, C_c(X)) \simeq K_{\bullet + c}(X) \,. \end{displaymath} \end{defn} \begin{prop} \label{DualOfCompactManifoldWithTwist}\hypertarget{DualOfCompactManifoldWithTwist}{} Let $X$ be a [[compact topological space|compact]] [[manifold]] with [[tangent bundle]] $\tau_X$ and let $c \in H^3(X,\mathbb{Z})$ be a [[twisted K-theory|twist]]. Then the [[C\emph{-algebra]] $C_{c}(X)$ of def. \ref{CStarAlgebraOf2BundleOnManifold} has a [[dual object]] in the [[full subcategory]] of [[KK-theory]] on [[separable C}-algebras]], given by \begin{displaymath} (C_c(X))^\vee \simeq C_{\frac{1}{c\otimes W_3(\tau_X)}}(X) \,, \end{displaymath} hence by the same manifold but with twist the inverse of the third [[integral Stiefel-Whitney class]] and the original twist. The same remains true in $G$-equivariant KK-theory, for $G$ a [[locally compact topological space|locally compact]] [[topological group]]. \end{prop} The non-equivariant case is in (\hyperlink{BrodzkiMathaiRosenbergSzabo06}{Brodzki-Mathai-Rosenberg-Szabo 06, section 7.3}) and the generalization to the equivariant case in (\hyperlink{Tu06}{Tu 06, theorem 3.1}) (where we use remark \ref{OppositeConvolutionAlgebraAndInverseTwist} in order to interpret the opposite twisted convolution algebra up to equivalence as inducing the inverse twist). \hypertarget{PropertiesKOrientationAndUmkehrMaps}{}\paragraph*{{K-Orientation and Umkehr maps}}\label{PropertiesKOrientationAndUmkehrMaps} We discuss [[Umkehr maps]]/[[fiber integration in generalized cohomology]] in [[K-theory]] using Poincar\'e{} duality algebras / [[dual objects]] in [[KK-theory]]. \begin{prop} \label{}\hypertarget{}{} Every homomorphism $f \colon A \to B$ between PD $C^\ast$-algebras is [[K-orientation|K-orientable in KK-theory]]. The [[K-orientation]] is given by the corresponding [[dual morphism]], hence the element $f! \colon B \to A$ given as the composite \begin{displaymath} f! \coloneqq \Delta^\vee_A \otimes_{A^{op}} f^{op} \otimes_{B^{op}} \Delta_B \,. \end{displaymath} \end{prop} (\hyperlink{BMRS07}{BMRS 07, 3.3}) More generally we have the following. \begin{example} \label{PushAlongInclusionOfManifoldsAndDBraneCharge}\hypertarget{PushAlongInclusionOfManifoldsAndDBraneCharge}{} Let $i \colon Q \to X$ be a map of [[compact topological space|compact]] [[manifolds]] and let $\chi \colon X \to B^2 U(1)$ modulate a [[circle 2-bundle]] regarded as a [[twisted K-theory|twist for K-theory]]. Then forming [[twisted groupoid convolution algebras]] yields a [[KK-theory]] morphism of the form \begin{displaymath} C_{i^\ast \chi}(Q) \stackrel{i^\ast}{\longleftarrow} C_{\chi}(X) \,, \end{displaymath} with notation as in def. \ref{CStarAlgebraOf2BundleOnManifold}. By prop. \ref{DualOfCompactManifoldWithTwist} the [[dual morphism]] is of the form \begin{displaymath} C_{\frac{1}{i^\ast \chi \otimes W_3(T Q)}}(Q) \stackrel{i_!}{\longrightarrow} C_{\frac{1}{\chi \otimes W_3(T X)}}(X) \,. \end{displaymath} If we redefine the twist on $X$ to absorb this ``quantum correction'' as $\chi \mapsto \frac{1}{\chi \otimes W_3(T X)}$ then this is \begin{displaymath} C_{i^\ast \chi\frac{W_3(i^\ast T X)}{W_3(T Q)}}(Q) \stackrel{i_!}{\longrightarrow} C_{\chi}(X) \,, \end{displaymath} Postcomposition with this map in [[KK-theory]] now yields a map from the $i^\ast \chi \otimes W_3(N Q)$-[[twisted K-theory]] of $Q$ to the $\chi$-[[twisted K-theory]] of $X$: \begin{displaymath} i_! \colon K_{\bullet + W_3(N Q) + i^\ast \chi}(Q) \to K_{\bullet +\chi} \,. \end{displaymath} This is the \emph{[[twisted Umkehr map]]} in this context. If we here think of $i \colon Q \hookrightarrow X$ as being the inclusion of a [[D-brane]] [[worldvolume]], then $\chi$ would be the class of the [[background gauge field|background]] [[B-field]] and an element \begin{displaymath} [\xi] \in K_{\bullet + W_3(N Q) + i^\ast \chi}(Q) \end{displaymath} is called (the K-class of) a \emph{[[Chan-Paton gauge field]]} on the D-brane satisfying the [[Freed-Witten-Kapustin anomaly cancellation]] mechanism. (The orginal [[Freed-Witten anomaly cancellation]] assumes $\xi$ given by a [[twisted unitary bundle|twisted line bundle]] in which case it exhibits a [[twisted spin{\tt \symbol{94}}c structure]] on $Q$.) Finally its [[fiber integration|push-forward]] \begin{displaymath} [i_! \xi] \in K_{\bullet- \chi}(X) \end{displaymath} is called the corresponding \emph{[[D-brane charge]]}. \end{example} See (\hyperlink{Nuiten13}{Nuiten 13}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} For $A = C_0(X)$ the [[algebra of functions]] on a [[compact topological space|compact]] [[complex manifold]] $X$, then $A$ is a PD algebra with fundamental class $\Delta$ in [[K-homology]] given by the [[Dolbeault operator]] on $X \times X$. \end{example} (\hyperlink{BMRS07}{BMRS 07, example 3.2}) \begin{example} \label{}\hypertarget{}{} For $A = C_0(X)$ the [[algebra of functions]] [[vanishing at infinity]] of a [[manifold]] $X$ with [[spin{\tt \symbol{94}}c structure]]. Take $B = C_0(T^\ast X) \simeq_{KK} A^{op} \simeq A$. Then $\Delta$ constructed from the [[Dirac operator]] on the [[Clifford algebra bundle]] over $T^\ast X$ is a fundamental class. \end{example} (\hyperlink{BMRS07}{BMRS 07, proof of theorem 2.9}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[fundamental class]] \item [[virtual fundamental class]] \item [[Poincaré duality complex]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{for_graded_associative_algebras}{}\subsubsection*{{For graded associative algebras}}\label{for_graded_associative_algebras} \begin{itemize}% \item Pascal Lambrechts, Don Stanley, \emph{Poincar\'e{} duality and commutative differential graded algebras} (\href{http://arxiv.org/abs/math/0701309}{arXiv:math/0701309}) \end{itemize} \hypertarget{for_algebras_3}{}\subsubsection*{{For $C^\ast$-algebras}}\label{for_algebras_3} For [[C\emph{-algebras]]/in [[noncommutative topology]]:} \begin{itemize}% \item [[Henri Moscovici]], \emph{Eigenvalue inequalities and Poincar\'e{} duality in noncommutative geometry}, Commun. Math. Phys. 184 , 3 (1997) 619 \end{itemize} Chapter 6.4 $\beta$ (starting p. 601) in \begin{itemize}% \item [[Alain Connes]], \emph{[[Noncommutative Geometry]]} \end{itemize} Def. 2.1 in \begin{itemize}% \item Jacek Brodzki, [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{Noncommutative correspondences, duality and D-branes in bivariant K-theory}, Adv. Theor. Math. Phys.13:497-552,2009 (\href{http://arxiv.org/abs/0708.2648}{arXiv:0708.2648}) \end{itemize} Duality including the [[twisted K-theory]] induced by [[twisted spin{\tt \symbol{94}}c structure]] over [[manifolds]] is discussed in section 7 of \begin{itemize}% \item Jacek Brodzki, [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{D-Branes, RR-Fields and Duality on Noncommutative Manifolds}, Commun. Math. Phys. 277:643-706,2008 (\href{http://arxiv.org/abs/hep-th/0607020}{arXiv:hep-th/0607020}) \end{itemize} and generalized to equivariant [[KK-theory]] in \begin{itemize}% \item [[Jean-Louis Tu]], \emph{Twisted K-theory and Poincar\'e{} duality} (\href{http://arxiv.org/abs/math/0609556}{arXiv:math/0609556}) \end{itemize} More on dual objects in KK is in \begin{itemize}% \item [[Heath Emerson]], [[Ralf Meyer]], \emph{Bivariant K-theory via correspondences}, Adv. Math. 225 (2010), 2883-2919 (\href{http://arxiv.org/abs/0812.4949}{arXiv:0812.4949}) \item [[Heath Emerson]], [[Ralf Meyer]], \emph{Dualities in equivariant Kasparov theory} (\href{http://arxiv.org/abs/0711.0025}{arXiv:0711.0025}) \end{itemize} Discussion of the [[twisted Umkehr map]] and the [[Freed-Witten-Kapustin anomaly]] in this context is in \begin{itemize}% \item [[Joost Nuiten]], \emph{[[schreiber:master thesis Nuiten|Cohomological quantization of local prequantum boundary field theory]]}, master thesis, August 2013 \end{itemize} [[!redirects Poincaré duality algebras]] [[!redirects Poincare duality algebra]] [[!redirects Poincare duality algebras]] [[!redirects Poincaré duality C\emph{-algebra]] [[!redirects Poincaré duality C}-algebras]] [[!redirects Poincare duality C\emph{-algebra]] [[!redirects Poincare duality C}-algebras]] \end{document}