\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poincaré lemma} [[!redirects Poincare lemma]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Statement}{Statement}\dotfill \pageref*{Statement} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Poincar\'e{} Lemma} in [[differential geometry]] and [[complex analytic geometry]] asserts that ``every [[differential form]] $\omega$ which is closed, $d_{dR}\omega = 0$, is \emph{locally} exact, $\omega|_U = d_{dR}\kappa$.'' In more detail: if $X$ is contractible then for every closed [[differential form]] $\omega \in \Omega^k_{cl}(X)$ with $k \geq 1$ there exists a differential form $\lambda \in \Omega^{k-1}(X)$ such that \begin{displaymath} \omega = d_{dR} \lambda \,. \end{displaymath} Moreover, for $\omega$ a smooth family of closed forms, there is a smooth family of $\lambda$s satisfying this condition. This statement has several more abstract incarnations. One is that it says that on a [[Cartesian space]] (or a complex [[polydisc]]) the [[de Rham cohomology]] (the [[holomorphic de Rham complex|holomorphic de Rham cohomology]]) vanishes in positive degree. Still more abstractly this says that the canonical morphisms of [[sheaves of chain complexes]] \begin{displaymath} \mathbb{R} \to \Omega^\bullet_{dR} \end{displaymath} \begin{displaymath} \mathbb{C} \to \Omega^\bullet_{hol} \end{displaymath} from the [[locally constant sheaf]] on the [[real numbers]] (the [[complex numbers]]) to the [[de Rham complex]] ([[holomorphic de Rham complex]]) is a [[stalk]]-wise [[quasi-isomorphism]] -- hence an [[equivalence]] in the [[derived category]] and hence induce an equivalence in [[hypercohomology|hyper]]-[[abelian sheaf cohomology]]. (The latter statement \emph{fails} in general in complex [[algebraic geometry]], see (\hyperlink{Illusie12}{Illusie 12, 1.}) and see also at \emph{[[GAGA]]}.) (A variant of such [[resolutions]] of constant sheaves for the case over [[Klein geometries]] are [[BGG resolutions]].) The Poincar\'e{} lemma is a special case of the more general statement that the pullbacks of differential forms along [[homotopy|homotopic]] [[smooth function]] are related by a [[chain homotopy]]. \hypertarget{Statement}{}\subsection*{{Statement}}\label{Statement} \begin{theorem} \label{}\hypertarget{}{} Let $f_1, f_2 : X \to Y$ be two [[smooth function]]s between [[smooth manifolds]] and $\Psi : [0,1] \times X \to Y$ a (smooth) [[homotopy]] between them. Then there is a [[chain homotopy]] between the induced morphisms \begin{displaymath} f_1^*, f_2^* : \Omega^\bullet(Y) \to \Omega^\bullet(X) \end{displaymath} on the [[de Rham complex]]es of $X$ and $Y$. In particular, the action on [[de Rham cohomology]] of $f_1^*$ and $f_2^*$ coincide, \begin{displaymath} H_{dR}^\bullet(f_1^*) \simeq H_{dR}^\bullet(f_2^*) \,. \end{displaymath} Moreover, an explicit formula for the [[chain homotopy]] $\psi : f_1 \Rightarrow f_2$ is given by the ``[[homotopy operator]]'' \begin{displaymath} \psi : \omega \mapsto (x \mapsto \int_{[0,1]} \iota_{\partial_t} (\Psi^*\omega)(x) ) d t \,. \end{displaymath} \end{theorem} Here $\iota_{\partial t}$ denotes contraction (see [[Cartan calculus]]) with the canonical [[vector field]] tangent to $[0,1]$, and the [[integration]] is that of functions with values in the [[vector space]] of differential forms. \begin{proof} We compute \begin{displaymath} \begin{aligned} d_{Y} \psi(\omega) + \psi( d_X \omega ) & = \int_{[0,1]} d_Y \iota_{\partial_t} \Psi^*(\omega) d t + \int_{[0,1]} \iota_{\partial_t} \Psi^*(d_X \omega) d t \\ & = \int_{[0,1]} [d_Y,\iota_{\partial_t}] \Psi^* (\omega) d t \\ & = \int_{[0,1]} \mathcal{L}_{t} \Psi^* (\omega) d t \\ & = \int_{[0,1]} \partial_t \Psi^* (\omega) d t \\ & = \int_{[0,1]} d_{[0,1]} \Psi^* (\omega) \\ & = \Psi_1^* \omega - \Psi_0^* \omega \\ & = f_2^* \omega - f_1^* \omega \end{aligned} \,, \end{displaymath} where in the [[integral]] we used first that the [[exterior differential]] commutes with pullback of [[differential forms]], then [[Cartan's magic formula]] $[d,\iota_{\partial t}] = \mathcal{L}_t$ for the [[Lie derivative]] along the [[cylinder]] on $X$ and finally the [[Stokes theorem]]. \end{proof} The \textbf{Poincar\'e{} lemma} proper is the special case of this statement for the case that $f_1 = const_y$ is a function constant on a point $y \in Y$: \begin{prop} \label{}\hypertarget{}{} If a [[smooth manifold]] $X$ admits a smooth contraction \begin{displaymath} \itexarray{ X \\ \downarrow^{\mathrlap{(id,0)}} & \searrow^{\mathrlap{id}} \\ X \times [0,1] & \stackrel{\Psi}{\to} & X \\ \uparrow^{\mathrlap{(id,1)}} & \nearrow_{\mathrlap{const_x}} \\ X } \end{displaymath} then the [[de Rham cohomology]] of $X$ is concentrated on the ground field in degree 0. Moreover, for $\omega$ any closed form on $X$ in positive degree an explicit formula for a form $\lambda$ with $d \lambda = \omega$ is given by \begin{displaymath} \lambda = \int_{[0,1]} \iota_{\partial_t}\Psi^*(\omega) d t \,. \end{displaymath} \end{prop} \begin{proof} In the general situation discussed above we now have $f_1^* = 0$ in positive degree. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{Poincar\'e{} lemma} \begin{itemize}% \item [[Kähler potential]] \end{itemize} \item [[Stokes theorem]] \item [[de Rham theorem]] \item [[Hodge theorem]] \item [[variational sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A nice account collecting all the necessary background (in [[differential geometry]]) is in \begin{itemize}% \item Daniel Litt, \emph{The Poincar\'e{} lemma and de Rham cohomology} (\href{http://math.stanford.edu/~dlitt/exposnotes/poincare_lemma.pdf}{pdf}) \end{itemize} Discussion in [[complex analytic geometry]] is in \begin{itemize}% \item [[Luc Illusie]], \emph{Around the Poincar\'e{} lemma, after Beilinson}, talk notes 2012 (\href{http://www.math.u-psud.fr/~illusie/derived-deRham3.pdf}{pdf}) \end{itemize} following \begin{itemize}% \item [[Alexander Beilinson]], \emph{$p$-adic periods and de Rham cohomology}, J. of the AMS 25 (2012), 715-738 \end{itemize} [[!redirects Poincaré lemma]] \end{document}