\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poisson Lie algebroid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_vectorbundle_with_anchor}{As vector-bundle with anchor}\dotfill \pageref*{as_vectorbundle_with_anchor} \linebreak \noindent\hyperlink{chevalleyeilenberg_algebra}{Chevalley-Eilenberg algebra}\dotfill \pageref*{chevalleyeilenberg_algebra} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Cohomology}{Cohomology and Chern-Simons elements}\dotfill \pageref*{Cohomology} \linebreak \noindent\hyperlink{lagrangian_submanifolds_and_coisotropic_submanifolds}{Lagrangian submanifolds and coisotropic submanifolds}\dotfill \pageref*{lagrangian_submanifolds_and_coisotropic_submanifolds} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A Poisson Lie algebroid on a [[manifold]] $X$ is a [[Lie algebroid]] on $X$ naturally defined from and defining the structure of a [[Poisson manifold]] on $X$. This is the degree-1 example of a tower of related concepts, described at [[n-symplectic manifold]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\pi \in \Gamma(\Wedge^2 TX)$ be a [[Poisson manifold]] structure, incarnated as a [[Poisson tensor]]. \hypertarget{as_vectorbundle_with_anchor}{}\subsubsection*{{As vector-bundle with anchor}}\label{as_vectorbundle_with_anchor} In terms of the vector-bundle-with anchor definition of [[Lie algebroid]] the \textbf{Poisson Lie algebroid} $\mathfrak{P}(X,\pi)$ corresponding to $\pi$ is the [[cotangent bundle]] \begin{displaymath} \itexarray{ T^* X &&\stackrel{\pi(-)}{\to}&& T X \\ & \searrow && \swarrow \\ && X } \end{displaymath} equipped with the anchor map that sends a [[differential 1-form]] $\alpha$ to the [[vector]] obtained by contraction with the [[Poisson bivector]] $\pi \colon \alpha \mapsto \pi(\alpha,-)$. The [[Lie bracket]] $[-,-] : \Gamma(T^* X) \wedge \Gamma(T^* X) \to \Gamma(T^* X)$ is given by \begin{displaymath} [\alpha,\beta] \coloneqq \mathcal{L}_{\pi(\alpha)} \beta - \mathcal{L}_{\pi(\beta)} \alpha - d_{dR}(\pi(\alpha,\beta))\,, \end{displaymath} where $\mathcal{L}$ denotes the [[Lie derivative]] and $d_{dR}$ the [[de Rham differential]]. This is the unique Lie algebroid bracket on $T^* X \stackrel{\pi}{\to} T X$ which is given on exact differential 1-forms by \begin{displaymath} [d_{dR} f, d_{dR} g] = d_{dR} \{f,g\} \end{displaymath} for all $f,g \in C^\infty(X)$. On a [[coordinate patch]] this reduces to \begin{displaymath} [d x^i , d x^j] = d_{dR} \pi^{i j} \end{displaymath} for $\{x^i\}$ the coordinate functios and $\{\pi^{i j}\}$ the components of the [[Poisson tensor]] in these coordinates. \hypertarget{chevalleyeilenberg_algebra}{}\subsubsection*{{Chevalley-Eilenberg algebra}}\label{chevalleyeilenberg_algebra} We describe the [[Chevalley-Eilenberg algebra]] of the Poisson Lie algebra given by $\pi$, which defines it dually. Notice that $\pi$ is an element of degree 2 in the [[exterior algebra]] $\wedge^\bullet \Gamma(T X)$ of [[multivector field]]s on $X$. The Lie bracket on [[tangent bundle|tangent vector]]s in $\Gamma(T X)$ extends to a bracket $[-,-]_{Sch}$ on multivector field, the \textbf{[[Schouten bracket]]}. The defining property of the Poisson structure $\pi$ is that \begin{displaymath} [\pi,\pi]_{Sch} = 0 \,. \end{displaymath} This makes \begin{displaymath} d_{CE(\mathfrak{P}(X,\pi))} := [\pi, -] : CE(\mathfrak{P}(X,\pi)) \to CE(\mathfrak{P}(X,\pi))) \end{displaymath} into a differential of degree +1 on multivector fields, that squares to 0. We write $CE(\mathfrak{P}(X,\pi))$ for the exterior algebra equipped with this differential. More explicitly, let $\{x^i\} : X \to \mathbb{R}^{dim X}$ be a coordinate patch. Then the differential of $CE(\mathfrak{P}(X,\pi))$ is given by \begin{displaymath} d_{\mathfrak{P}(X,\pi)} : x^i \mapsto 2 \pi^{i j} \partial_j \end{displaymath} \begin{displaymath} d_{\mathfrak{P}(X,\pi)} : \partial_i \mapsto ... \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Cohomology}{}\subsubsection*{{Cohomology and Chern-Simons elements}}\label{Cohomology} We discuss aspects of the [[∞-Lie algebra cohomology|∞-Lie algebroid cohomology]] of Poisson Lie algebroids $\mathfrak{P}(X,\pi)$. This is equivalently called \emph{[[Poisson cohomology]]} (see there for details). We shall be lazy (and follow tradition) and write the following formulas in a local coordinate patch $\{x^i\}$ for $X$. Then the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{P}(X,\pi))$ is generated from the $x^i$ and the $\partial_i$, and the [[Weil algebra]] $W(\mathfrak{P}(X,\pi))$ is generated from $x^i$, $\partial_i$ and their shifted partners, which we shall write $\mathbf{d} x^i$ and $\mathbf{d}\partial_i$. The differential on the Weil algebra we may then write \begin{displaymath} d_{W(\mathfrak{P}(X,\pi))} = [\pi,-]_{Sch} + \mathbf{d} \,. \end{displaymath} Notice that $\pi \in CE(\mathfrak{P}(X,\pi))$ is a [[∞-Lie algebra cohomology|Lie algebroid cocycle]], since \begin{displaymath} d_{CE(\mathfrak{P}(X,\pi))} \pi = [\pi,\pi]_{Sch} = 0 \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} The [[invariant polynomial]] in transgression with $\pi$ is \begin{displaymath} \omega = (\mathbf{d}\partial_i) \wedge (\mathbf{d}x^i) \in W(\mathfrak{P}(X,\pi)) \,. \end{displaymath} \end{prop} \begin{proof} One checks that the following is a \textbf{[[Chern-Simons element]]} (see there for more) exhibiting the transgression \begin{displaymath} cs_\pi = \pi^{i j} \partial_i \wedge \partial_j + \partial_i \wedge \mathbf{d}x^i \;\;\; \in W(\mathfrak{P}(X,\pi)) \end{displaymath} in that $d_{W(\mathfrak{P}(X,\pi))} cs_\pi = \omega$, and the restriction of $cs_\pi$ to $CE(\mathfrak{P}(X,\pi))$ is evidently the Poisson tensor $\pi$. For the record (and for the signs) here is the explicit computation \begin{displaymath} \begin{aligned} d_{W(\mathfrak{P}(X,\pi))} (\pi^{i j} \partial_i \wedge \partial_j + \partial_i \wedge \mathbf{d} x^i) = & \mathbf{d}x^k (\partial_k \pi^{i j}) \partial_i \wedge \partial_j \\ & + 2 \pi^{i j} (\mathbf{d}\partial_i) \wedge \partial_j \\ & - (\partial_i \pi^{j k}) \partial_j \wedge \partial_k \wedge \mathbf{d}x^i \\ & + (\mathbf{d}\partial_i)\wedge (\mathbf{d} x^i) \\ & + (-)(-) 2\pi^{i j} \partial_i \wedge \mathbf{d}\partial_j \\ = & (\mathbf{d}\partial_i)\wedge (\mathbf{d} x^i) \end{aligned} \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} The invariant polynomial $\omega$ makes $\mathfrak{P}(X,\pi)$ a [[schreiber:symplectic ∞-Lie algebroid]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[schreiber:infinity-Chern-Simons theory]] [[action functional]] induced from the above Chern-Simons element is that of the [[Poisson sigma-model]]: it sends [[∞-Lie algebroid valued forms]] \begin{displaymath} \Omega^\bullet(\Sigma) \leftarrow W(\mathfrak{P}(X,\pi)) (X,\eta) \end{displaymath} on a 2-dimensional manifold $\Sigma$ with values in a Poisson Lie algebroid on $X$ to the integral of the [[Chern-Simons form|Chern-Simons 2-form]] \begin{displaymath} \Omega^\bullet(\Sigma) \leftarrow W(\mathfrak{P}(X,\pi)) \stackrel{(\omega, cs_\omega)}{\leftarrow} W(b^2 \mathbb{R}) : CS_\omega(X,\eta) \end{displaymath} which, by the above, is in components \begin{displaymath} CS_\omega(X,\eta) = \eta_i \wedge d_{dR} X^i + \pi^{i j} \eta_i \wedge \eta_j \,. \end{displaymath} \end{remark} \hypertarget{lagrangian_submanifolds_and_coisotropic_submanifolds}{}\subsubsection*{{Lagrangian submanifolds and coisotropic submanifolds}}\label{lagrangian_submanifolds_and_coisotropic_submanifolds} The [[Lagrangian dg-submanifolds]] (see there for more) of a Poisson Lie algebroid correspond to the [[coisotropic submanifolds]] of the corresponding [[Poisson manifold]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item Under [[Lie integration]] a Poisson Lie algebroid is supposed to yield a [[symplectic groupoid]]. \item There is a formulation of [[Legendre transformation]] in terms of Lie algebroid. \item [[symplectic Lie n-algebroid]] \begin{itemize}% \item [[symplectic manifold]] \item \textbf{Poisson Lie algebroid} \item [[Courant algebroid]] \end{itemize} \item [[Hopf algebroid]] (appears as a deformation quantization of a Poisson-Lie algebroid) \end{itemize} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For the simple but important special case of [[Lie-Poisson structure]] see there at \emph{\href{Lie-Poisson+structure#PoissonLieAlgebroidCohomology}{Poisson-Lie algebroid cohomology}}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} One of the earliest reference seems to be \begin{itemize}% \item [[Ted Courant]], \emph{Tangent Lie algebroid} (\href{http://www.iop.org/EJ/article/0305-4470/27/13/026/ja941326.pdf}{pdf}) \end{itemize} A review is for instance in \begin{itemize}% \item [[Dmitry Roytenberg]], appendix A \emph{Courant algebroids, derived brackets and even symplectic supermanifolds} (\href{http://arxiv.org/abs/math/9910078}{arXiv:math/9910078}) \end{itemize} The [[H-cohomology]] of the graded symplectic form of a Poisson Lie algebroid, regarded a a [[symplectic Lie n-algebroid]], is considered in \begin{itemize}% \item [[Pavol ?evera]], p. 1 of \emph{On the origin of the BV operator on odd symplectic supermanifolds}, Lett Math Phys (2006) 78: 55. (\href{https://arxiv.org/abs/math/0506331}{arXiv:0506331}) \end{itemize} [[!redirects Poisson-Lie algebroid]] [[!redirects Poisson Lie algebroids]] \end{document}