\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poisson Lie group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_quantum_groups}{Relation to quantum groups}\dotfill \pageref*{relation_to_quantum_groups} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{AdditivePoissonLieGroups}{Additive Poisson Lie groups}\dotfill \pageref*{AdditivePoissonLieGroups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{Poisson Lie group} (often written Poisson-Lie group) or Lie Poisson group $G$ is a [[ Lie group]] and a [[Poisson manifolds]], the two structures being compatible such that the group product is a smooth map of Poisson manifolds where $G\times G$ has the product Poisson structure. \textbf{Warning}: the inverse map is NOT a Poisson map unless G has the trivial Poisson structure, in fact it is an anti-Poisson map. [[deformation quantization|Deformation quantizations]] of Poisson Lie groups are [[Hopf algebras]]. The usual [[quantum groups]] have smaller number of quantum subgroups (i.e. Hopf quotient algebras) than the corresponding Lie group has, namely only only those whose classical limits are not only Lie subgroups but Poisson Lie subgroups. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_quantum_groups}{}\subsubsection*{{Relation to quantum groups}}\label{relation_to_quantum_groups} One can regard Poisson groups as the [[classical limit]] of [[quantum groups]]: a theorem by Drinfeld established a [[bijection]] between connected, simply connected Poisson Lie groups and [[Lie bialgebras]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{AdditivePoissonLieGroups}{}\subsubsection*{{Additive Poisson Lie groups}}\label{AdditivePoissonLieGroups} A [[Lie-Poisson structure]] is an additive Poisson Lie group (e.g. \hyperlink{KosmannSchwarzbach04}{Kosmann-Schwarzbach 04, p. 46}). If $H$ is any (finite dimensional) Lie group then the dual $(T_e H)^*$ of its [[tangent Lie algebra]] has a canonical bracket introduced by Kirillov which makes it into a Poisson Lie group. To this aim one identifies $(T_e H)^*$ with its own tangent space $T_u (T_e H)^*$ and interprets the differential $df$ of a function $f:(T_e H)^*\to \mathbb{R}$ as a function $(T_e H)^*\to ((T_e H)^*)^*\cong T_e H$ where the finite dimensionality is used. Then Kirillov defines \begin{displaymath} \lbrace f_1, f_2\rbrace (u) = \langle [(df_1)_u, (df_2)_u, u\rangle \end{displaymath} Given two Lie groups $H,K$, the Lie algebra homomorphisms $T_e H \to T_e K$ are in 1-1 correspondence with the Poisson Lie maps $(T_e K)^* \to (T_e H)^*$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[dressing action]] \item [[Poisson Lie 2-group]] \item \emph{Unrelated} is the concept of the Lie group that [[Lie integration|integrates]] the [[Lie algebra]] inside a [[Poisson algebra]]. This is instead called a \emph{[[quantomorphism group]]}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item V. Chari, A. Pressley, \emph{A guide to quantum groups}, Camb. Univ. Press 1994 \item [[S. Majid]], \emph{Foundations of quantum group theory}, Cambridge University Press 1995, 2000. \item Gloria Mar\'i{} Beffa, \emph{A transverse structure for the Lie-Poisson bracket on the dual of the Virasoro algebra}, Pacific J. Math. \textbf{163} (1994), no. 1, 43--72, \href{http://projecteuclid.org/getRecord?id=euclid.pjm/1102622628}{euclid} \item M. A. Semenov-Tian-Shansky, \emph{ --. }, Teoret. Mat. Fiz., 1992, 93:2, 302--329 (in Russian) \href{http://83.149.209.141/php/getFT.phtml?jrnid=tmf&paperid=1530&volume=93&year=1992&issue=2&fpage=302&what=fullt&option_lang=eng}{pdf}; in English: \emph{Poisson--Lie groups. The quantum duality principle and the twisted quantum double}, Theoret. and Math. Physics 1992, 93:2, 1292--1307 \href{http://dx.doi.org/10.1007/BF01083527}{doi}; \emph{Poisson groups and dressing transformations}, Zap. Nauchn. Sem. LOMI, 150 (1986), 119–142 \href{http://mi.mathnet.ru/znsl4975}{mathnet.ru}; \emph{Poisson Lie groups, quantum duality principle, and the quantum double}, in: Math. aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), 219--248, Contemp. Math. \textbf{175}, AMS 1994. \item M. A. Semenov-Tian-Shansky, \emph{Classical $r$-matrices, Lax equations, Poisson Lie groups and dressing transformations}, in: Field theory, quantum gravity and strings, II (Meudon/Paris, 1985/1986), 174--214, Lec. Notes in Phys. \textbf{280}, Springer 1987, \href{http://www.ams.org/mathscinet-getitem?mr=89g:58098}{MR89g:58098} \item A. P. Fordy, A. G. Reyman, M. A. Semenov-Tian-Shansky, \emph{Classical $r$-matrices and compatible Poisson brackets for coupled KdV systems}, Lett. Math. Phys. \textbf{17} (1989), no. 1, 25--29, \href{http://dx.doi.org/10.1007/BF00420010}{doi}, \href{http://www.ams.org/mathscinet-getitem?mr=90e:58061}{MR90e:58061} \item A. Yu. Alekseev, A. Z. Malkin, \emph{Symplectic structures associated to Lie-Poisson groups}, Comm. Math. Phys. \textbf{162} (1994), no. 1, 147--173. \item T. Tao's blog: \href{http://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation}{The Euler-Arnold equation} \item [[Peter Olver]], \emph{Applications of Lie groups to differential equations}, Springer \item A. Cannas da Silva, [[Alan Weinstein]], \emph{Geometric models for noncommutative algebras}, Berkeley Math. Lec. Notes Series, AMS 1999, \href{http://math.berkeley.edu/%7Ealanw/Models.pdf}{pdf} \item [[Yvette Kosmann-Schwarzbach]], \emph{Groupes de Lie-Poisson quasitriangulaires}, in: G\'e{}om\'e{}trie symplectique et m\'e{}canique (La Grande Motte, 1988), 161--177, Springer LNM \textbf{1416}, 1990. \item [[Yvette Kosmann-Schwarzbach]], \emph{Lie bialgebras, Poisson Lie groups and dressing transformations}, in \emph{Integrability of Nonlinear Systems}, Second edition, Lecture Notes in Physics 638, Springer-Verlag, 2004, pp. 107-173. (\href{http://www.math.polytechnique.fr/cmat/kosmann/lnp2.pdf}{pdf}) \item A. G. Reyman, \emph{Poisson structures related to quantum groups}, in: Quantum groups and their applications in physics (Varenna, 1994), 407--443, Proc. Internat. School Phys. Enrico Fermi, 127, IOS, Amsterdam, 1996, \href{http://www.ams.org/mathscinet-getitem?mr=97j:58052}{MR97j:58052} \item Nicola Ciccoli, \emph{Quantization of co-isotropic subgroups}, Lett. Math. Phys. \textbf{42}:2 (1997) 123--138, \href{http://www.ams.org/leavingmsn?url=http://dx.doi.org/10.1023/A:1007352218739}{doi}, \href{http://www.ams.org/mathscinet-getitem?mr=98k:58252}{MR98k:58252} \item Renaud Brahami, \emph{Cluster X-varieties for dual Poisson-Lie groups I, II}, \href{http://arxiv.org/abs/1005.5289}{arxiv/1005.5289}, \href{http://arxiv.org/abs/1006.4583}{arxiv/1006.4583} \item L\'a{}szl\'o{} Feh\'e{}r, [[Ctirad Klimčík]], \emph{Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction}, Lett. Math. Phys. \textbf{87} (2009), no. 1-2, 125--138, \href{url=http://dx.doi.org/10.1007}{doi}, \href{http://www.ams.org/mathscinet-getitem?mr=2010c:53122}{MR2010c:53122}) \item V. Fock, A. B. Goncharov, \emph{Cluster X-varieties, amalgamation and Poisson-Lie groups}, \href{http://front.math.ucdavis.edu/0508.5408}{math.RT/0508408} \item Ivan Calvo, Fernando Falceto, David Garcia-Alvarez, \emph{Topological [[Poisson sigma model]]s on Poisson-Lie groups}, JHEP 0310 (2003) 033, $<$http://front.math.ucdavis.edu/0307.3178{\tt \symbol{62}} \item Philip Boalch, \emph{[[Stokes phenomenon|Stokes matrices]] and Poisson Lie groups}, Invent. math. 146, 479-506 (2001), \href{http://front.math.ucdavis.edu/0011.5062}{math.DG/0011062} \item [[Ctirad Klimčík]], [[Pavol Ševera]], \emph{[[T-duality]] and the moment map}, IHES/P/96/70, \href{http://arxiv.org/abs/hep-th/9610198}{hep-th/9610198}; \emph{Poisson-Lie T-duality: open strings and D-branes}, CERN-TH/95-339. Phys.Lett. B376 (1996) 82-89, \href{http://arxiv.org/abs/hep-th/9512124}{hep-th/9512124} \item [[Anton Alekseev]], [[Ctirad Klimčík]], [[Arkady Tseytlin]], \emph{Quantum Poisson-Lie T-duality and WZNW model}, Nucl. Phys. B458:430-444 (1996) \href{http://arxiv.org/abs/hep-th/9509.3123}{hep-th/9509123} \item David Li-Bland, [[Pavol Ševera]], \emph{On deformation quantization of Poisson-Lie groups and moduli spaces of flat connections}, \href{http://arxiv.org/abs/1307.2047}{arxiv/1307.2047} \end{itemize} [[!redirects Poisson-Lie group]] [[!redirects Lie Poisson group]] [[!redirects Lie-Poisson group]] [[!redirects Poisson Lie groups]] [[!redirects Poisson-Lie groups]] [[!redirects Lie Poisson groups]] [[!redirects Lie-Poisson groups]] [[!redirects Poisson group]] [[!redirects Poisson groups]] \end{document}