\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poisson sigma-model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToQuantizationOfPoissonManifolds}{Relation to deformation quantization of Poisson manifolds}\dotfill \pageref*{RelationToQuantizationOfPoissonManifolds} \linebreak \noindent\hyperlink{Branes}{Branes}\dotfill \pageref*{Branes} \linebreak \noindent\hyperlink{HolographicDual}{Holographic dual}\dotfill \pageref*{HolographicDual} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{LitWithBranes}{With branes}\dotfill \pageref*{LitWithBranes} \linebreak \noindent\hyperlink{recent_developments}{Recent developments}\dotfill \pageref*{recent_developments} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Poisson $\sigma$-model} is a 2-dimensional [[sigma-model]] [[quantum field theory]] whose target space is a [[Poisson Lie algebroid]]. It is a [[2-dimensional Chern-Simons theory]]. This may be thought of as encoding the [[quantum mechanics]] of a [[string theory|string]] propagating on the [[phase space]] of a system in [[classical mechanics]]. In his solution of the problem of [[deformation quantization]] [[Maxim Kontsevich]] showed that correlators for the 2-string interaction (the correlator on the worldsheet that is a disk with three marked points on its boundary) describe a product operation which is a deformation of the [[Poisson bracket]] on the target space. This solves the formal [[deformation quantization]] problem of the phase space in [[quantum mechanics]] by identifying the quantum algebra with the \emph{open string algebra} of a [[string theory]] on that target. The principal variant of the nonlinear Poisson sigma model is sometimes called Cattaneo-Felder model who have shown the graphical expansion used in Kontsevich's approach to the deformation quantization is explained via a Feynman diagram expansion in this model. If one considers [[brane]]s in the target space of the Poisson sigma-model, then then algebra of open strings that used to be just the deformation of the Poisson algebra becomes an [[A-infinity algebra|A-infinity algebroid]]. (See the references below). \begin{quote}% Probably something close to a [[Calabi-Yau category]], hence identifying the Poisson sigma-model as a [[TCFT]]. Does anyone know more in this direction? \end{quote} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The [[target space]] of a Poisson $\sigma$-model is any [[Poisson manifold]] $(X, \{\})$, or rather the [[Poisson Lie algebroid]] $\mathfrak{P}$ corresponding to that. A field configuration on a 2-dimensional $\Sigma$ is a [[connection on an infinity-bundle|connection]] \begin{displaymath} (\phi,\eta) : \mathfrak{T}\Sigma \to \mathfrak{P} \,. \end{displaymath} In components this is \begin{enumerate}% \item a [[smooth function]] $\phi : \Sigma \to X$; \item a 1-form $\eta \in \Omega^1(\Sigma, \phi^* T X)$ with values in the pullback of the [[tangent bundle]] of $X$ along $\phi$. \end{enumerate} The [[action functional]] on the [[configuration space]] of all such connections for [[compact space|compact]] $\Sigma$ is defined to be \begin{displaymath} S : (\phi,\eta) \mapsto \int_\Sigma \left( \langle \eta \wedge d_{dR}\phi\rangle + \frac{1}{2} \phi^*\pi(\eta) \right) \,, \end{displaymath} where $\pi \in \wedge^2_{C^\infty(C)}\Gamma(T X)$ is the Poisson tensor of $(X, \{-,-\})$ and where $\langle -,-\rangle$ is the canonical [[invariant polynomial]] on the [[Poisson Lie algebroid]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToQuantizationOfPoissonManifolds}{}\subsubsection*{{Relation to deformation quantization of Poisson manifolds}}\label{RelationToQuantizationOfPoissonManifolds} In (\hyperlink{CattaneoFelder}{Cattaneo-Felder}) it was shown that the [[n-point function|3-point function]] in the [[path integral quantization]] of the Poisson $\sigma$-model of a [[Poisson Lie algebroid]] associated with a [[Poisson manifold]] computes the [[star product]] in the [[deformation quantization]] of the Poisson manifold as given by (\hyperlink{Kontsevich}{Kontsevich}). A [[higher geometric quantization]] that also yields the [[strict deformation quantization]] is discussed at \emph{[[extended geometric quantization of 2d Chern-Simons theory]]}. One may think of this relation between the 2d Poisson sigma-model and [[quantum mechanics]] = 1d [[quantum field theory]] as an example of the Chern-Simons type [[holographic principle]]. For more along these lines see below at \emph{\hyperlink{HolographicDual}{holographic dual}}. \hypertarget{Branes}{}\subsubsection*{{Branes}}\label{Branes} The [[branes]] of the Poisson sigma model are related to [[coisotropic submanifolds]] of the underlying [[Poisson manifold]]. Notice that these are the [[Lagrangian dg-submanifolds]] of the [[Poisson Lie algebroid]]. (\hyperlink{CattaneoFelder03}{Cattaneo-Felder 03}). \hypertarget{HolographicDual}{}\subsubsection*{{Holographic dual}}\label{HolographicDual} By the Chern-Simons form of the [[holographic principle]] one expects the Poisson sigma-model to be related to a 1-dimensional [[quantum field theory]]. This is [[quantum mechanics]]. The \hyperlink{RelationToQuantizationOfPoissonManifolds}{above} relation to the deformation quantization of Poisson manifolds goes in this direction. More explicit realizations have been attempted, for instance (\hyperlink{Vassilevich}{Vassilevich}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[schreiber:∞-Chern-Simons theory]] \item [[sigma-model]] \begin{itemize}% \item [[AKSZ sigma-model]] \begin{itemize}% \item \textbf{Poisson sigma-model} \begin{itemize}% \item [[A-model]], [[B-model]] \end{itemize} \item [[Courant sigma-model]] \begin{itemize}% \item [[Chern-Simons theory]] \end{itemize} \end{itemize} \end{itemize} \item [[schreiber:∞-Chern-Simons theory]] \item [[higher dimensional Chern-Simons theory]] \begin{itemize}% \item [[1d Chern-Simons theory]] \item [[2d Chern-Simons theory]] \item [[3d Chern-Simons theory]] \item [[4d Chern-Simons theory]] \item [[5d Chern-Simons theory]] \item [[6d Chern-Simons theory]] \item [[7d Chern-Simons theory]] \item [[infinite-dimensional Chern-Simons theory]] \end{itemize} \end{itemize} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The Poisson sigma model was first considered in \begin{itemize}% \item [[Noriaki Ikeda]], \emph{Two-dimensional gravity and nonlinear gauge theory} , Ann.Phys.235(1994) 435- 464, hep-th/9312059. \end{itemize} and later independently by P. Schaller, T. Strobl, motivated from an attempt to unify several two-dimensional models of [[gravity]] and to cast them into a common form with [[Yang-Mills theory|Yang-Mills theories]]. \begin{itemize}% \item P. Schaller, T. Strobl, \emph{Poisson structure induced (topological) field theories}, Modern Phys. Lett. A 9 (1994), no. 33, 3129--3136, \href{http://dx.doi.org/10.1142/S0217732394002951}{doi}; \emph{Introduction to Poisson $\sigma$-models}, Low-dimensional models in statistical physics and quantum field theory (Schladming, 1995), 321--333, Lecture Notes in Phys. \textbf{469}, Springer 1996. \item Thomas Strobl, \emph{Gravity from Lie algebroid morphisms}, Comm. Math. Phys. \textbf{246} (2004), no. 3, 475--502, \emph{Algebroid Yang-Mills theories}, Phys. Rev. Lett. \textbf{93} (2004), no. 21, 211601, 4 pp. \href{http://dx.doi.org/10.1103/PhysRevLett.93.211601}{doi} \item M. Bojowald, A. Kotov, T. Strobl, \emph{Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries}, J. Geom. Phys. 54 (2005), no. 4, 400--426, \href{http://dx.doi.org/10.1016/j.geomphys.2004.11.002}{doi} \item Ctirad Klim\'i{}k, T. Strobl, \emph{WZW-Poisson manifolds}, J. Geom. Phys. \textbf{43} (2002), no. 4, 341--344, \end{itemize} The detailed argument by Cattaneo and Felder on how [[Maxim Kontsevich]]`s formula for the [[deformation quantization]] star product is the 3-point function of the Poisson sigma-model is in \begin{itemize}% \item [[Alberto Cattaneo]], [[Giovanni Felder]], \emph{A path integral approach to the Kontsevich quantization formula}, Commun. Math. Phys. 212, 591--611 (2000) \href{http://dx.doi.org/10.1007/s002200000229}{doi}, \href{http://arxiv.org/abs/math/9902090}{math.QA/9902090}. \item [[Alberto Cattaneo]], [[Giovanni Felder]], \emph{Poisson sigma models and deformation quantization}, Mod. Phys. Lett. A 16, 179--190 (2001) \href{http://arxiv.org/abs/hep-th/0102208}{hep-th/0102208}. \end{itemize} See also \begin{itemize}% \item [[Alberto Cattaneo]], [[Giovanni Felder]], \emph{Poisson sigma models and symplectic groupoids} , (ed. [[Klaas Landsman]], M. Pflaum, M. Schlichenmeier), Progress in Mathematics 198, 61--93 (Birkh\"a{}user, 2001) \href{http://arxiv.org/abs/math/0003023}{math.SG/0003023}. \item [[Alberto Cattaneo]], [[Giovanni Felder]], \emph{On the AKSZ formulation of the Poisson sigma model}, Lett. Math. Phys. 56, 163--179 (2001) \href{http://arxiv.org/abs/math/0102108}{math.QA/0102108}. \end{itemize} The interpretation in terms of [[schreiber:infinity-Chern-Simons theory]] is discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:AKSZ Sigma-Models in Higher Chern-Weil Theory]]} (2011) \end{itemize} Discussion in terms of [[holography]] is in \begin{itemize}% \item D. V. Vassilevich, \emph{Holographic duals to Poisson sigma models} (\href{http://arxiv.org/abs/1301.7029}{arXiv:1301.7029}) \end{itemize} \hypertarget{LitWithBranes}{}\subsubsection*{{With branes}}\label{LitWithBranes} The study of [[branes]] in the Poisson sigma-model has been started in \begin{itemize}% \item Damien Calaque, [[Giovanni Felder]], Andrea Ferrario, Carlo A. Rossi, \emph{Bimodules and branes in deformation quantization} (\href{http://arxiv.org/abs/0908.2299}{arXiv:0908.2299}) \item Damien Calaque, [[Giovanni Felder]], Carlo A. Rossi, \emph{Deformation quantization with generators and relations} (\href{http://arxiv.org/abs/0911.4377}{arXiv:0911.4377}) \item [[Alberto Cattaneo]], [[Giovanni Felder]], \emph{Coisotropic submanifolds in Poisson geometry and branes in the Poisson $\sigma$-model}, Lett.Math.Phys. 69 (2004) 157-175 (\href{http://arxiv.org/abs/math/0309180}{arXiv:0309180}) \end{itemize} \begin{itemize}% \item Andrea Ferrario, \emph{Poisson Sigma Model with branes and hyperelliptic Riemann surfaces} (\href{http://arxiv.org/abs/0709.0635}{arXiv:0709.0635}) \end{itemize} A review is in \begin{itemize}% \item F. Falceto, \emph{Branes in Poisson sigma models} (2009) (\href{http://benasque.org/2009gph/talks_contr/094Falceto.pdf}{pdf}) \end{itemize} \hypertarget{recent_developments}{}\subsubsection*{{Recent developments}}\label{recent_developments} \begin{itemize}% \item Francesco Bonechi, [[Alberto Cattaneo]], [[Pavel Mnev]], \emph{The Poisson sigma model on closed surfaces} (\href{http://arxiv.org/abs/1110.4850}{arXiv:1110.4850}) \end{itemize} [[!redirects Poisson sigma model]] \end{document}