\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Poisson-Lie T-duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{as_a_partial_duality_of_string_theory}{As a partial duality of string theory}\dotfill \pageref*{as_a_partial_duality_of_string_theory} \linebreak \noindent\hyperlink{related_lab_entries}{Related $n$Lab entries}\dotfill \pageref*{related_lab_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What has come to be called \emph{nonabelian T-duality} (\hyperlink{OssaQuevedo92}{Ossa-Quevedo 92}) \emph{Poisson-Lie T-Duality} (due to \hyperlink{KlimcikSevera95}{Klimcik-Ševera 95}, \hyperlink{vonUnge02}{von Unge 02}) is a generalization of [[T-duality]] from [[fiber bundles]] equipped with an [[abelian group]] of [[isometries]] ([[torus]] [[bundles]]) to those with a [[nonabelian group]] of isometries. Poisson-Lie T-duality may also be made manifest at the level of [[type II supergravity ]] in the framework of [[double field theory]] on [[Lie group|group manifolds]]. Using this framework both the NS/NS sector and the R/R sector are captured, and this allows to derive the transformation of the [[RR fields]] for full Poisson-Lie T-duality (\hyperlink{Hassler17}{Hassler 17}). \hypertarget{as_a_partial_duality_of_string_theory}{}\subsection*{{As a partial duality of string theory}}\label{as_a_partial_duality_of_string_theory} While ordinary abelian [[T-duality]] is supposedly a full [[duality in string theory]], in particular in that it is an equivalence on the [[string perturbation series]] to all orders of the squared [[string length]]/[[Regge slope]] $\alpha'$ and the [[string coupling constant]] $g_s$, it has apparntly been shown by [[Martin Roček]] (citation?) that there are topological [[obstructions]] at higher [[genus of a surface|genus]] for non-abelian T-duality, letting it break down in higher orders of $g_s$; and already a genus-0 ([[tree level]]) it apparently breaks down for the [[open string]] (i.e. on punctured [[disks]]) at some order of $\alpha'$. \hypertarget{related_lab_entries}{}\subsection*{{Related $n$Lab entries}}\label{related_lab_entries} \begin{itemize}% \item [[topological T-duality]] \item [[spherical T-duality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original articles are \begin{itemize}% \item Xenia C. de la Ossa, Fernando Quevedo, \emph{Duality Symmetries from Non--Abelian Isometries in String Theories}, Nucl.Phys. B403 (1993) 377-394 (\href{http://xxx.lanl.gov/abs/hep-th/9210021}{hep-th/9210021}) \item [[Ctirad Klimcik]], [[Pavol Ševera]], \emph{Dual non-Abelian duality and the Drinfeld double}, Physics Letters B, Volume 351, Issue 4, 1 June 1995, Pages 455-462 () \item [[Rikard von Unge]], \emph{Poisson-Lie T-plurality}, Journal of High Energy Physics, Volume 2002, JHEP07 (2002) (\href{https://arxiv.org/abs/hep-th/0205245}{arXiv:hep-th/0205245}) \end{itemize} Review includes \begin{itemize}% \item I. Petr, \emph{From Buscher Duality to Poisson‐Lie T‐Plurality on Supermanifolds}, AIP Conference Proceedings 1307, 119 (2010) () \item [[Konstadinos Sfetsos]], \emph{Recent developments in non-Abelian T-duality in string theory}, Fortschr. Phys., Special Issue: Proceedings of the ``Schools and Workshops on Elementary Particle Physics and Gravity'' (CORFU 2010), 29 August -- 12 September 2010, Corfu (Greece) Volume59, Issue11‐12 (\href{https://arxiv.org/abs/1105.0537}{arXiv:1105.0537}) \end{itemize} See also \begin{itemize}% \item Benjo Fraser, Dimitrios Manolopoulos, [[Konstantinos Sfetsos]], \emph{Non-Abelian T-duality and Modular Invariance} (\href{https://arxiv.org/abs/1805.03657}{arXiv:1805.03657}) \end{itemize} Discussion of the duality at the level of [[type II supergravity]] [[equations of motion]] is (using [[Riemannian geometry]] of [[Courant algebroids]]) due to \begin{itemize}% \item [[Branislav Jurco]], [[Jan Vysoky]], \emph{Poisson-Lie T-duality of String Effective Actions: A New Approach to the Dilaton Puzzle}, Journal of Geometry and Physics Volume 130, August 2018, Pages 1-26 (\href{https://arxiv.org/abs/1708.04079}{arXiv:1708.04079}) \end{itemize} Discussion within a broader picture of [[duality in physics|dual]] [[higher gauge theories]], including 4d [[electric-magnetic duality]]: \begin{itemize}% \item [[Ján Pulmann]], [[Pavol Ševera]], [[Fridrich Valach]], \emph{A non-abelian duality for (higher) gauge theories} (\href{https://arxiv.org/abs/1909.06151}{arXiv:1909.06151}) \end{itemize} See also \begin{itemize}% \item [[Pavol Ševera]], [[Fridrich Valach]], \emph{Courant algebroids, Poisson-Lie T-duality, and type II supergravities} (\href{https://arxiv.org/abs/1810.07763}{arXiv:1810.07763}) \item [[Falk Hassler]], \emph{Poisson-Lie T-Duality in Double Field Theory} (\href{https://arxiv.org/abs/1707.08624}{arXiv:1707.08624}) \end{itemize} Discussion of nonabelian [[T-folds]]: \begin{itemize}% \item Mark Bugden, \emph{Non-abelian T-folds} (\href{https://arxiv.org/abs/1901.03782}{arXiv:1901.03782}) \end{itemize} Discussion in [[cosmology]]: \begin{itemize}% \item Ladislav Hlavatý, Ivo Petr, \emph{Poisson-Lie plurals of Bianchi cosmologies and Generalized Supergravity Equations} (\href{https://arxiv.org/abs/1910.08436}{arxiv:1910.08436}) \end{itemize} [[!redirects nonabelian T-duality]] [[!redirects non-abelian T-duality]] \end{document}