\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Polyakov action} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToNambuGotoAction}{Relation to Nambu-Goto action}\dotfill \pageref*{RelationToNambuGotoAction} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Polyakov action functional} or \emph{energy functional} is a standard [[kinetic action|kinetic]] [[action functional]] for [[sigma models]] with [[worldvolume]] $(\Sigma,g)$ and [[target spacetime]] $(X,\mu)$ ([[pseudo-Riemannian manifold|pseudo]])[[Riemannian manifolds]]. Its [[critical points]] are the [[harmonic maps]] from $\Sigma$ to $X$ With a suitable ``[[worldvolume]] [[cosmological constant]]'' added and with the worldvolume metric ``integrated out'', then the Polyakov action is [[classical field theory|classically]] equivalent to the [[Nambu-Goto action]] functional, which is simply the ``proper volume'' function for images of $\Sigma$ in $Y$. But as opposed to the Nambu-Goto action the Polyakov action is quadratic in derivatives. Therefore it is lends itself better to [[perturbation theory]] of [[scattering amplitudes]] -- where the kinetic contributions have to be [[Gaussian integrals]] -- such as in [[worldline formalism]] for [[quantum field theory]] as well as in [[perturbative string theory]]. On the other hand, the [[Nambu-Goto action]] lends itself better to generalizations such as the [[Dirac-Born-Infeld action]] for [[D-branes]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let \begin{itemize}% \item $p \in \mathbb{N}$ (for [[p-brane]] dynamics); \item $(X,\mu)$ a [[pseudo-Riemannian manifold]] ([[target spacetime]]); \item $\Sigma$ a [[compact topological space|compact]] [[smooth manifold]] of dimension $(p+1)$ ([[worldvolume]]). \item $[\Sigma,X]$ the [[diffeological space]] of [[smooth functions]] $\Sigma \to X$. \item $Met(\Sigma)$ the [[moduli space]] of ([[pseudo-Riemannian metrics|pseudo]])[[Riemannian metrics]] $g$ on $\Sigma$. \end{itemize} The Polyakov action is the [[smooth function]] \begin{displaymath} S_{Pol} \;\colon\; [\Sigma,X]\times Met(\Sigma) \longrightarrow \mathbb{R} \end{displaymath} which on a map $\phi \colon \Sigma \to X$ and a metric $g$ on $\Sigma$ is given by the [[integral]] \begin{displaymath} S_{Pol}(\phi,g) \coloneqq \int_\Sigma \Vert d\phi\Vert^2 dvol_g \end{displaymath} where the [[derivative]] $d \phi \in \Gamma(T^\ast \Sigma\otimes \phi^\ast T X)$, and where the [[norm]] $\Vert - \Vert$ is given jointly by the metrics $g$ and $\mu$ of $\Sigma$ and $X$. When both $\Sigma$ and $X$ are covered by single [[coordinate charts]] $(\sigma^a)_{a = 0}^p$ and $(x^\mu)$, then this reads \begin{displaymath} S_{Pol}(\phi,g) = \int_{\Sigma} \sqrt{det g} \left( g^{a b} \eta_{\mu \nu} (\partial_a \phi^\mu) (\partial_b \phi^\nu) \right) d \sigma^0 \cdots d \sigma^p \end{displaymath} with a sum over repeated indices understood. Here $det g$ denotes the [[absolute value]] of the [[determinant]] of $(g_{a b})$ (often written $-det g$ in the pseudo-Riemannian case.) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToNambuGotoAction}{}\subsubsection*{{Relation to Nambu-Goto action}}\label{RelationToNambuGotoAction} The Polyakov action with a suitable worldvolume cosmological constant term added is classically equivalent to the [[Nambu-Goto action]] (e.g. \hyperlink{Nieto01}{Nieto 01, section 2}). This [[shell|on-shell]] equivalence is exhibited by the smooth function \begin{displaymath} \tilde S \;\colon\; [\Sigma,X] \times Met(\Sigma)\times \Gamma(T \Sigma \otimes T \Sigma \otimes Dens \Sigma) \longrightarrow \mathbb{R} \end{displaymath} which on a triple $(\phi,g,\Lambda)$ is given by \begin{displaymath} \tilde S(\phi,g,\Lambda) \coloneqq \int_\Sigma \left( dvol(g) + \Lambda( \vert d \phi \vert^2 - g) \right) \,, \end{displaymath} where now $\vert d\phi \vert^2$ denotes the square norm only with respect to the metric on $X$. Because, on the one hand, the [[equations of motion]] induced by $\tilde S$ for variation of $\Lambda$ are \begin{displaymath} \vert d \phi \vert^2 - g = 0 \end{displaymath} and substituting that constraint back into $\tilde S$ gives the [[Nambu-Goto action]]. On the other hand, the equations of motion induced by $\tilde S$ for variation of $g$ are \begin{displaymath} \tfrac{1}{2}g^{-1}dvol(g) - \Lambda = 0 \end{displaymath} and substituting that back into $\tilde S$ gives \begin{displaymath} \tfrac{1}{2}\int_\Sigma \left( \Vert d \phi\Vert^2 + (p-1) \right) dvol(g) \end{displaymath} which is the Nambu goto action with ``[[cosmological constant]]'' $(p-1)$. (So the case where this cosmological constant correction disappears is $p = 1$ corresponding to the [[string]].) \hypertarget{references}{}\subsection*{{References}}\label{references} The Polyakov action was introduced in \begin{itemize}% \item [[Alexander Polyakov]], \emph{Quantum geometry of bosonic strings} , Phys. Lett. B103 (1981) 207; \emph{Quantum geometry of fermionic strings} , Phys. Lett. B103 (1981) 211 \end{itemize} Detailed discussion of the relation to the [[Nambu-Goto action]] and the [[Dirac-Born-Infeld action]] is in \begin{itemize}% \item J. A. Nieto, \emph{Remarks on Weyl invariant p-branes and Dp-branes} (\href{http://arxiv.org/abs/hep-th/0110227}{arXiv:hep-th/0110227}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Polyakov_action}{Polyakov action}} \end{itemize} [[!redirects Polyakov action functional]] [[!redirects energy functional]] \end{document}