\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Postnikov system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DefinitionForTopologicalSpaces}{For topological spaces}\dotfill \pageref*{DefinitionForTopologicalSpaces} \linebreak \noindent\hyperlink{DefinitionForSimplicialSets}{For simplicial sets}\dotfill \pageref*{DefinitionForSimplicialSets} \linebreak \noindent\hyperlink{DefinitionForSimplicialSetsAbsoluteVersion}{Absolute version}\dotfill \pageref*{DefinitionForSimplicialSetsAbsoluteVersion} \linebreak \noindent\hyperlink{ForSimplicialSetsRelativeVersion}{Relative version}\dotfill \pageref*{ForSimplicialSetsRelativeVersion} \linebreak \noindent\hyperlink{DefinitionForSimplicialPresheaves}{For simplicial presheaves}\dotfill \pageref*{DefinitionForSimplicialPresheaves} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{ConStructionForSimplicialSets}{For simplicial sets}\dotfill \pageref*{ConStructionForSimplicialSets} \linebreak \noindent\hyperlink{CoskeletonTower}{Coskeleton tower}\dotfill \pageref*{CoskeletonTower} \linebreak \noindent\hyperlink{IdentificationRelativeSkeleta}{Identification relative to skeleta}\dotfill \pageref*{IdentificationRelativeSkeleta} \linebreak \noindent\hyperlink{absolute_postnikov_tower}{Absolute Postnikov tower}\dotfill \pageref*{absolute_postnikov_tower} \linebreak \noindent\hyperlink{RelativePostnikovTowerConstruction}{Relative Postnikov tower}\dotfill \pageref*{RelativePostnikovTowerConstruction} \linebreak \noindent\hyperlink{HomotopyClassesRelativeSkeleta}{Homotopy classes relative to skeleta}\dotfill \pageref*{HomotopyClassesRelativeSkeleta} \linebreak \noindent\hyperlink{ForStrictOmegaGroupoids}{For strict $\omega$-groupoids}\dotfill \pageref*{ForStrictOmegaGroupoids} \linebreak \noindent\hyperlink{ExamplesForChainComplexes}{For chain complexes}\dotfill \pageref*{ExamplesForChainComplexes} \linebreak \noindent\hyperlink{in_simplicial_presheaves}{In simplicial (pre-)sheaves}\dotfill \pageref*{in_simplicial_presheaves} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_simplicial_sets_3}{For simplicial sets}\dotfill \pageref*{for_simplicial_sets_3} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{postnikov_tower_in_an_category}{Postnikov tower in an $(\infty,1)$-category}\dotfill \pageref*{postnikov_tower_in_an_category} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Postnikov system} is the [[infinitary factorization system]] of [[(n-epi, n-mono) factorization system|(n-epi, n-mono)-factorizations]] through [[n-images]] in an [[(∞,1)-topos]]. The basic (and historically first) example is the factorization in [[∞Grpd]]/[[Top]] of morphisms to the point: here the Postnikov system assigns to a [[homotopy type]] $X$ a [[tower]] \begin{displaymath} X \to \cdots \to X_3 \to X_2 \to X_1 \to X_0 \simeq * \end{displaymath} where each $X_k$ is a [[homotopy n-type|homotopy (k-2)-type]]/[[n-truncated object in an (infinity,1)-category|(n-2)-truncated object]] and such that each morphism $X_{k+1} \to X_k$ induces an [[isomorphism]] on [[homotopy groups]] in degree $\leq k-2$. This may be thought of as decomposing $X$ into its ``layers'' as seen by the degree of [[homotopy groups]]. The [[characteristic classes]] which give the [[∞-group extension]] in each layer are called the \emph{[[Postnikov invariants]]} or \emph{[[k-invariants]]} of $X$. More generally, in any [[(∞,1)-topos]] and for any [[morphism]] $f \colon X \to Y$ the corresponding Postnikov system is a [[tower]] \begin{displaymath} f \colon X \simeq im_\infty(f) \to \cdots \to im_2(f) \to im_1(f) \to im_0(f) \simeq Y \end{displaymath} of [[n-images]] of $f$ which interpolates between $X$ and $Y$ along $f$: the object $im_n(f)$ is a [[homotopy type]] that looks like $X$ in low degrees (below $n-1$), looks like $Y$ in high degrees (above degree $n$) and looks like the ordinary (1-[[topos theory|topos theoretic]]) [[image]] of $f$ \emph{on homotopy groups} in degree $n-1$ itself. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In full generality, the Postnikov system is the [[infinitary factorization system]] of [[(n-epi, n-mono) factorization system|(n-epi, n-mono)-factorizations]] through [[n-images]] in an [[(∞,1)-topos]]. The following spells this out explicitly for default [[homotopy theory]], hence in [[∞Grpd]] and in terms of the [[presentable (∞,1)-category|presentation]] by the [[model structure on topological spaces]] and the [[model structure on simplicial sets]]: \begin{itemize}% \item \emph{\hyperlink{DefinitionForTopologicalSpaces}{For topological spaces}} \item \emph{\hyperlink{DefinitionForSimplicialSets}{For simplicial sets}}. \end{itemize} With a little bit of care this induces corresponding presentations of Postnikov systems in general [[(∞,1)-topos]] by prolonging to suitable [[model structures on simplicial presheaves]]: \begin{itemize}% \item \emph{\hyperlink{DefinitionForSimplicialPresheaves}{For simplicial presheaves}}. \end{itemize} For more discussion of the general abstract situation see at \begin{itemize}% \item \emph{[[Postnikov tower in an (∞,1)-category]]} \end{itemize} \hypertarget{DefinitionForTopologicalSpaces}{}\subsubsection*{{For topological spaces}}\label{DefinitionForTopologicalSpaces} Historically, Postnikov systems were first described on the model of [[homotopy types]] constituted by [[topological spaces]]. A \textbf{Postnikov system} or \textbf{Postnikov [[tower]]} or \textbf{Moore-Postnikov tower/system} of [[topological spaces]], or rather of their [[homotopy types]], is a sequence of [[path connected topological space|path connected]], [[pointed object|pointed]] [[topological spaces]] $X^{(n)}$, $n \geq 1$, such that $\pi_r(X^{(n)})=0$ for $r \gt n$, together with a sequence $\pi_n$ of [[module]]s of the [[fundamental group]] $\pi_1(X^{(1)})$ of $X^{(1)}$ and [[fibration]]s $p_n : X^{(n+1)} \to X^{(n)}$ classified up to [[homotopy type]] by a specified cohomology class $k^{n+1} \in H^{n+1}(X^{(n)}, \pi_n)$. \hypertarget{DefinitionForSimplicialSets}{}\subsubsection*{{For simplicial sets}}\label{DefinitionForSimplicialSets} We discuss the realization of Postnikov systems on [[simplicial sets]]/[[Kan complexes]], first in the \begin{itemize}% \item \emph{\hyperlink{DefinitionForSimplicialSetsAbsoluteVersion}{Absolute version}} \end{itemize} and then more generally for the \begin{itemize}% \item \emph{\hyperlink{ForSimplicialSetsRelativeVersion}{Relative version}} \end{itemize} \hypertarget{DefinitionForSimplicialSetsAbsoluteVersion}{}\paragraph*{{Absolute version}}\label{DefinitionForSimplicialSetsAbsoluteVersion} \begin{defn} \label{SimplicialPostnikovTower}\hypertarget{SimplicialPostnikovTower}{} Let $X$ be a [[simplicial set]]. A \textbf{Postnikov tower} for $X$ is \begin{enumerate}% \item a sequence \begin{displaymath} \cdots \to X_2 \stackrel{q_1}{\to} X_1 \stackrel{q_0}{\to} X_0 \end{displaymath} with maps $i_n : X \to X_n$ such that all [[diagram]]s \begin{displaymath} \itexarray{ && X \\ & {}^{\mathllap{i_n}}\swarrow && \searrow^{\mathrlap{i_{n-1}}} \\ X_n && \stackrel{q_{n-1}}{\to} && X_{n-1} } \end{displaymath} [[commuting diagram|commute]]; \item such that for all vertices $v \in X_0$ we have for the [[homotopy group]]s \begin{displaymath} \pi_{\gt n}( X_n, v) = 0 \end{displaymath} and \begin{displaymath} (i_n)_* : \pi_i (X,v) \stackrel{\simeq}{\to} \pi_i X_n \end{displaymath} for $i \leq n$. \end{enumerate} \end{defn} This appears for instance as (\hyperlink{GoerssJardine}{GoerssJardine, def VI 3.1}). \hypertarget{ForSimplicialSetsRelativeVersion}{}\paragraph*{{Relative version}}\label{ForSimplicialSetsRelativeVersion} \begin{defn} \label{SimplicialPostnikovTowerRelative}\hypertarget{SimplicialPostnikovTowerRelative}{} Let $f : X \to Y$ be a homomorphism of [[simplicial sets]]. A (relative) \textbf{Postnikov tower} for $f$ is a [[tower]] \begin{displaymath} \itexarray{ X \\ \downarrow^{\mathrlap{\simeq}} \\ im_\infty(f) \\ \downarrow \\ \vdots \\ \downarrow \\ im_2(f) \\ \downarrow \\ im_1(f) \\ \downarrow \\ im_0(f) \\ \downarrow^{\mathrlap{\simeq}} \\ Y } \end{displaymath} that factors $f : X \to Y$ such that for all $n \in \mathbb{N}$ \begin{enumerate}% \item $X \to im_n(f)$ \begin{enumerate}% \item induces an [[epimorphism]] on [[homotopy groups]] in degree $n-1$; \item induces an [[isomorphism]] on [[homotopy groups]] in degree $\lt n-1$ \end{enumerate} \item $im_n(f) \to Y$ \begin{enumerate}% \item induces a [[monomorphism]] on [[homotopy groups]] in degree $n-1$; \item induces an [[isomorphism]] on [[homotopy groups]] in degree $\geq n$. \end{enumerate} \end{enumerate} \end{defn} This appears for instance as (\hyperlink{GoerssJardine}{Goerss-Jardine, def. VI 2.9}). \begin{remark} \label{}\hypertarget{}{} By the [[long exact sequence of homotopy groups]], the relative Postnikov tower is the tower of the [[(n-connected, n-truncated) factorization system]] of $f$ regarded as a morphism in the [[(∞,1)-category]] [[∞Grpd]]: is is the [[n-epimorphism]],[[n-monomorphism]] factorization through the \emph{[[n-image]]} of a morphism. \end{remark} \hypertarget{DefinitionForSimplicialPresheaves}{}\subsubsection*{{For simplicial presheaves}}\label{DefinitionForSimplicialPresheaves} \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} We discuss explicit constructions/presentations of Postnikov systems. \begin{itemize}% \item \emph{\hyperlink{ConStructionForSimplicialSets}{For simplicial sets}} \item \emph{\hyperlink{ForStrctOmegaGroupoids}{For strict $\omega$-groupoids}}. \end{itemize} \hypertarget{ConStructionForSimplicialSets}{}\subsubsection*{{For simplicial sets}}\label{ConStructionForSimplicialSets} There are three main functorial models for the Postnikov tower of a [[simplicial set]]: \begin{itemize}% \item \emph{\hyperlink{CoskeletonTower}{Coskeleton tower}}; \item \emph{\hyperlink{IdentificationRelativeSkeleta}{Identification relative to skeleta}}; \item \emph{\hyperlink{HomotopyClassesRelativeSkeleta}{Homotopy classes relative to skeleta}} \end{itemize} \hypertarget{CoskeletonTower}{}\paragraph*{{Coskeleton tower}}\label{CoskeletonTower} \begin{prop} \label{}\hypertarget{}{} If $X$ is regarded as an [[∞-groupoid]] modeled as a [[Kan complex]], then the [[coskeleton]] sequence \begin{displaymath} X = \lim_n cosk_n X \to \cdots \to cosk_{n+1} X \to cosk_{n} X \to \cdots \to * \end{displaymath} exhibits a Postnikov tower for $X$. \end{prop} This is observed for instance in (\hyperlink{ArtinMazur}{ArtinMazur})) or (\hyperlink{DwyerKan}{DwyerKan}). Also see [[coskeleton]] for more details. \hypertarget{IdentificationRelativeSkeleta}{}\paragraph*{{Identification relative to skeleta}}\label{IdentificationRelativeSkeleta} The following construction quotients out the relations encoded by the cells that are thrown in in the above construction, such as to make the maps in the Postnikov tower into [[Kan fibrations]]. We first discuss the absolute tower and then the relative version. \hypertarget{absolute_postnikov_tower}{}\paragraph*{{Absolute Postnikov tower}}\label{absolute_postnikov_tower} \begin{defn} \label{}\hypertarget{}{} Let $X$ be a [[Kan complex]]. Define for each $n \in \mathbb{N}$ an [[equivalence relation]] $\sim_n$ on the simplices of $X$ as follows: two $q$-simplices \begin{displaymath} \alpha, \beta : \Delta^q \to X \end{displaymath} are equivalent if their restriction to the $n$-[[simplicial skeleton|skeleton]] coincides \begin{displaymath} sk_n(\alpha) = sk_n(\beta) : sk_n(\Delta^q) \hookrightarrow \Delta^q \to X \,. \end{displaymath} Write \begin{displaymath} X(n) := X/_{\sim_n} \end{displaymath} for the [[quotient]] [[simplicial set]]. \end{defn} There are evident morphisms \begin{displaymath} X(n) \to X(n-1). \end{displaymath} \begin{prop} \label{SimplPostnikovByCoskeletonQuotient}\hypertarget{SimplPostnikovByCoskeletonQuotient}{} This is a Postnikov tower, def. \ref{SimplicialPostnikovTower}, and all morphisms are [[Kan fibrations]]. Moreover the canonical morphism \begin{displaymath} X \to \lim_{\leftarrow_n} X(n) \end{displaymath} is an [[isomorphism]], exhibiting $X$ as the [[limit]] (``[[inverse limit]]'') over this tower diagram. \end{prop} This appears for instance as (\hyperlink{GoerssJardine}{GoerssJardine, theorem Vi 2.5}). \hypertarget{RelativePostnikovTowerConstruction}{}\paragraph*{{Relative Postnikov tower}}\label{RelativePostnikovTowerConstruction} We discuss a model for the relative Postnikov tower, def. \ref{SimplicialPostnikovTowerRelative}. \begin{defn} \label{}\hypertarget{}{} For $f : X \to Y$ a [[Kan fibration]] between [[Kan complexes]], define for each $n$ and each $k$ an [[equivalence relation]] $\sim_n$ on $k$-[[simplices]] \begin{displaymath} \alpha, \beta \colon \Delta^k \to X \end{displaymath} such that $\alpha \sim_n \beta$ if \begin{enumerate}% \item the $n$-[[skeleta]] $sk_n \Delta^k \to \Delta^k \stackrel{\alpha, \beta}{\to} X$ are equal; \item the [[images]] $f(\alpha), f(\beta)\in Y$ are equal. \end{enumerate} Let \begin{displaymath} im_{n+1}(f) \coloneqq X/\sim_n \end{displaymath} be the simplicial set of [[equivalence classes]] under this equivalence relation. This canonically comes with morphisms $im_{n_1}(f) \to im_{n_2}(f)$ for $\infty \geq n_1 \gt n_2 \geq 0$. \end{defn} For instance (\hyperlink{GoerssJardine}{Goerss-Jardine, def. VI 2.9}). \begin{prop} \label{}\hypertarget{}{} This construction gives indeed a relative Postnikov tower for $f$. \end{prop} For instance (\hyperlink{GoerssJardine}{Goerss-Jardine, theorem VI 2.11}). \hypertarget{HomotopyClassesRelativeSkeleta}{}\paragraph*{{Homotopy classes relative to skeleta}}\label{HomotopyClassesRelativeSkeleta} For $X$ a [[Kan complex]] and $n \in \mathbb{N}$, let $\tau_{\lt n}X$ be the simplicial set defined as the [[quotient]] \begin{displaymath} \tau_{\lt m}X : k \mapsto X_k / homotopy-rel-(n-1)-skeleton \,, \end{displaymath} where two $k$-cells are identified if there is a simplicial [[homotopy]] between them that fixes their $(n-1)$-skeleton. This is due to [[John Duskin]]. See for instance (\hyperlink{Beke}{Beke, pages 302-305}). \hypertarget{ForStrictOmegaGroupoids}{}\subsubsection*{{For strict $\omega$-groupoids}}\label{ForStrictOmegaGroupoids} \begin{prop} \label{}\hypertarget{}{} Consider an object in [[sSet]]/[[∞Grpd]] that is in the image of $Str\omega Grpd$, hence given by a morphism $f \colon X \to Y$ of [[strict ∞-groupoids]]. Then for $n \in \mathbb{N}$ the $(n-1)$-Postnikov stage of $f$ is given by the [[strict ∞-groupoid]] $im_n(f)$ with \begin{displaymath} \left(im_n\left(f\right)\right)_k = \left\{ \itexarray{ X_k & \forall k \lt n-1 \\ im(X_{n-1}) \subset Y_{n-1} & \forall \; k = n-1 \\ \ast & \forall k \geq n } \right. \end{displaymath} equipped with the evident [[composition]] operations induced from those of $X$ and $Y$, and equipped with the canonical morphisms of strict $\omega$-groupoids \begin{displaymath} X \to im_n(f) \to \ast \end{displaymath} (the left one being the identity in degree $k \lt n-1$, the quotent projection in degree $n-1$ and $f$ in degree $k \geq n$, and the right one being $f$ in degree $k \lt n-1$, the image inclusion in degree $n-1$ and the identity in degree $k \geq n$). \end{prop} This is discussed in (\hyperlink{BFGM}{BFGM}). \begin{proof} The [[homotopy groups]] of a strict $\omega$-groupoid in any degree $k$ are simply given by the groups of $k$-[[automorphisms]] of the identity $(k-1)$-morphism on a given baspoint modulo $(k+1)$-morphisms (hence the homology of the corresponding [[crossed complex]] in that degree). Therefore it is clear from the construction of $im_n(f)$ above that $X \to im_n(f)$ is surjective on $\pi_0$ and an isomorphism on $\pi_{k \lt n-1}$, and that $im_n(f)$ is a monomorphism on $\pi_{n-1}$ and an isomorphism on $\pi_{k \geq n}$. \end{proof} \hypertarget{ExamplesForChainComplexes}{}\subsubsection*{{For chain complexes}}\label{ExamplesForChainComplexes} The following gives a model for the $(n-1)$-stage of a relative Postnikov tower for the special case that the the morphism of Kan complexes is the image under the [[Dold-Kan correspondence]] of a [[chain map]] between [[chain complexes]]. Before we give the explicit formule below as prop. \ref{ImageFactorizationForChainComplexes}, the following remark \ref{ChainComplexnPlusOneImageInDegreen} motivates the formula by regarding chain complexes as models for [[strict ∞-groupoids]] (by this prop.orrespondence\#GlobularAndCubical)) \begin{remark} \label{ChainComplexnPlusOneImageInDegreen}\hypertarget{ChainComplexnPlusOneImageInDegreen}{} Let $f_\bullet \colon V_\bullet \longrightarrow W_\bullet$ be a [[chain map]] between [[chain complexes]] For $n \in \mathbb{N}$, consider the abelian group \begin{displaymath} (im_{n+1}(f))_n \;\coloneqq\; coker(\, ker(\partial_V) \cap ker(f_n) \to V_n \,) \end{displaymath} For the following it is helpful to think of this abelian group in the following equivalent ways. Define an [[equivalence relation]] on $V_n$ by \begin{displaymath} \left( v_n \sim v'_n \right) \;\Leftrightarrow\; \left( (\partial_V v_n = \partial_V v'_n) \;\text{and}\; (f_n(v_n) = f_n(v'_n)) \right) \,. \end{displaymath} Then \begin{displaymath} (im_{n+1}(f))_n \simeq V_n/_\sim \end{displaymath} is equivalently the set of [[equivalence classes]] of this equivalence relation, which inherits abelian group structure since the eqivalence relation is linear. This is because the equivalence relation says equivalently that \begin{displaymath} \left( v_n \sim v'_n \right) \;\Leftrightarrow\; \left( v_n - v'_n \;\in\; ker(\partial_V) \cap ker(f_n) \right) \end{displaymath} and hence is generated under linearity by \begin{displaymath} \left( v_n \sim 0 \right) \;\Leftrightarrow\; \left( v_n \in ker(\partial_V) \cap ker(f_n) \right) \,. \end{displaymath} Moreover, notice that the [[Dold-Kan correspondence]] \begin{displaymath} DK \;\colon\; Ch_{\bullet \geq 0} \longrightarrow KanCplx \end{displaymath} factors through [[globe|globular]] [[strict omega-groupoids]] (\href{Dold-Kan+correspondence#GlobularAndCubical}{here}). An [[n-morphism]] in the [[strict omega-groupoid]] $DK(V_\bullet)$ is of the form \begin{displaymath} (v_{n-1}) \overset{\phantom{AA}v_n\phantom{AA}}{\longrightarrow} (v_{n-1} + \partial v_n) \,. \end{displaymath} In terms of these morphisms the [[equivalence relation]] above says that two of them are equivalent precisely if \begin{enumerate}% \item they are ``[[parallel morphisms]]'' in that they have the same [[source]] and [[target]]; \item they have the same image under $f$ in the [[n-morphisms]] of $DK(W_\bullet)$. \end{enumerate} This suggests yet another equivalent way to think of $(im_{n+1}(f))_n$: it is the [[disjoint union]] over the [[target]] $(n-1)$-cells in $V_{n-1}$ of the images under $f$ of the sets of $n$-cells from zero to that target: \begin{displaymath} (im_{n+1}(f))_n \simeq \underset{v_{n-1} \in V_{n-1}}{\sqcup} \left\{ f_n(v_n) \vert v_n \in V_n \,\text{and}\,\partial v_n = v_{n-1} \right\} \,. \end{displaymath} \end{remark} \begin{prop} \label{ImageFactorizationForChainComplexes}\hypertarget{ImageFactorizationForChainComplexes}{} Let $f_\bullet \colon V_\bullet \longrightarrow W_\bullet$ be a [[chain map]] between [[chain complexes]] and let $n \in \mathbb{N}$. Recall the abelian group $\underset{v_{n-1}}{\sqcup}\{f_n(v_n) \vert \partial v_n = v_{n-1}\}$ from remark \ref{ChainComplexnPlusOneImageInDegreen}. The following [[diagram]] of [[abelian groups]] [[commuting diagram|commutes]]: \begin{displaymath} \itexarray{ \vdots && \vdots && \vdots \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_{W}}} && \downarrow^{\mathrlap{\partial_{W}}} \\ V_{n+3} &\overset{f_{n+3}}{\longrightarrow}& W_{n+3} &\overset{=}{\longrightarrow}& W_{n+3} \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_{W}}} && \downarrow^{\mathrlap{\partial_{W}}} \\ V_{n+2} &\overset{f_{n+2}}{\longrightarrow}& W_{n+2} &\overset{=}{\longrightarrow}& W_{n+2} \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{ \partial_W } } && \downarrow^{\mathrlap{\partial_{W}}} \\ V_{n+1} &\overset{f_{n+1}}{\longrightarrow}& \left\{ w_{n+1} | \exists v_n : \partial_W w_{n+1} = f_n(v_n), \partial_V v_n = 0, \right\} &\overset{}{\longrightarrow}& W_{n+1} \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\partial_W} && \downarrow^{\mathrlap{\partial_{W}}} \\ V_n &\overset{ (f_n, \partial_V) }{\longrightarrow}& \underset{v_{n-1}}{\sqcup} \left\{ f_n(v_n) \vert \partial_V v_n = v_{n-1} \right\} &\overset{ }{\longrightarrow}& W_n \\ \downarrow^{\mathrlap{\partial_V}} && \downarrow^{\mathrlap{(f_n(v_n),\partial_V v_n) \mapsto \partial_V v_n}} && \downarrow^{\mathrlap{\partial_W}} \\ V_{n-1} &\overset{=}{\longrightarrow}& V_{n-1} &\overset{f_{n-1}}{\longrightarrow}& W_{n-1} \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_W}} \\ V_{n-2} &\overset{=}{\longrightarrow}& V_{n-2} &\overset{f_{n-2}}{\longrightarrow}& W_{n-2} \\ \\ \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_{V}}} && \downarrow^{\mathrlap{\partial_W}} \\ \vdots && \vdots && \vdots } \end{displaymath} Moreover, the middle vertical sequence is a chain complex $im_{n+1}(f)_\bullet$, and hence the diagram gives a factorization of $f_\bullet$ into two chain maps \begin{displaymath} f_\bullet \;\colon\; V_\bullet \longrightarrow im_{n+1}(f)_\bullet \longrightarrow W_\bullet \,. \end{displaymath} Finally, this is a model for the [[n-image|(n+1)-image factorization]] of $f$ in that on [[homology groups]] the following holds: \begin{enumerate}% \item $H_{\bullet \lt n}(V) \overset{\simeq}{\to} H_{\bullet \lt n}(im_{n+1}(f))$ are [[isomorphisms]]; \item $H_n(V) \to H_n(im_{n+1}(f)) \hookrightarrow H_n(W)$ is the [[image|image factorization]] of $H_n(f)$; \item $H_{\bullet \gt n}(im_{n+1}(f)) \overset{\simeq}{\to} H_{\bullet \gt n}(W)$ are [[isomorphisms]]. \end{enumerate} \end{prop} \begin{proof} This follows by elementary and straightforward direct inspection. \end{proof} \hypertarget{in_simplicial_presheaves}{}\subsubsection*{{In simplicial (pre-)sheaves}}\label{in_simplicial_presheaves} The following gives a sufficient condition for modeling [[n-image]] factorizations in some [[(∞,1)-toposes]] with particularly convenient presentation. \begin{prop} \label{nImageFactroizationModeledOnSimplicialPrsheaves}\hypertarget{nImageFactroizationModeledOnSimplicialPrsheaves}{} Let $C$ be a site with [[point of a topos|enough points]], so that the weak equivalences in $sPSh(C)_{\mathrm{loc}}$ are detected on [[stalks]] (\href{model+structure+on+simplicial+presheaves#OverSiteWithEnoughPointsWeakEquivalencesDetectedOnStalks}{this prop.}). Then given a morphism of [[Kan complex]]-valued [[simplicial presheaves]] \begin{displaymath} f \colon X \longrightarrow Y$ in $sPSh(C) \end{displaymath} such that both $X$ and $Y$ are [[homotopy n-types|homotopy k-types]] for some finite $k \in \mathbb{N}$, then its [[n-image]] factorization in the [[(∞,1)-topos]] $L_{lwhe} sPSh(C)_{loc}$ for any $n \in \mathbb{N}$ is presented by any factorization $X \longrightarrow im_{n}(f) \longrightarrow Y$ in $sPSh(C)$ through some Kan-complex valued simplicial presheaf $im_n(f)$ such that for each object $U \in C$ the [[simplicial homotopy groups]] satisfy the following conditions: \begin{enumerate}% \item $\pi_{\bullet \lt n}\left(X(U) \to (im_{n}(f))(U)\right)$ are [[isomorphisms]]; \item $\pi_n\left(X(U) \to (im_{n}(f))(U)\to Y(U)\right)$ is the [[(epi,mono) factorization]] of $\pi_n(f(U))$; \item $\pi_{\bullet \gt n}\left((im_{n}(f))(U) \to Y(U)\right)$ are [[isomorphisms]]. \end{enumerate} \end{prop} \begin{proof} Evalutation on [[stalks]] is a [[filtered colimit]] which preserves the [[finite limits]] and [[finite colimits]] that go into the definition of [[simplicial homotopy groups]]. Therefore the global conditions assumed on the simplicial homotopy groups imply that the same kind of conditions holds for the stalkwise homotopy groups. These are the [[categorical homotopy groups in an infinity-topos|categorical homotopy groups]] in $L_{lwhe} sPSh(C)_{loc}$. By \href{n-truncated+object+of+an+infinity-category#RecognizngnTuncationOnSimplicialHomotopyGroups}{this prop.} and \href{n-connected+object+of+an+infinity-topos#Connectedness}{this def.} we may recognize $n$-truncation of morphisms on categorical homotopy groups (using the assumption that $X$ and $Y$ are $k$-truncated for some $k$). Therefore the claim now follows from the stalkwise [[long exact sequence of homotopy groups]]. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} It is known that Postnikov systems classify all weak, pointed [[connected space|connected]] [[homotopy type]]s. In particular, if $X$ satisfies $\pi_r(X)=0$ for $1 \lt r \lt n$ then the first non trivial Postnikov invariant is an element $k^{n+1}$ of [[group cohomology]] (with twisted coefficients of course). Such elements are also determined by $n$-fold crossed extensions of $\pi_n$ by $\pi_1$, which are exact [[crossed complex]]es of the form \begin{displaymath} 0 \to \pi_n \to C_n \to C_{n-1} \to \cdots \to C_2 \to C_1 \end{displaymath} together with an isomorphism $Coker(C_2 \to C_1) \cong \pi_1$. This gives an algebraic model of such an $n$-[[homotopy n-type|type]]. Advantages of algebraic models are that algebraic constructions can be made on them, such as forming [[limits]] or colimits. The various [[higher homotopy van Kampen theorem]]s are useful in the latter case. For example, it may be difficult or well nigh impossible to write down a determination of the Postnikov invariant of a pushout of crossed modules, even if the pushout consists of finite groups. A Postnikov system is easiest to understand in the 2-stage case, i.e. two non vanishing homotopy groups, and focuses attention on the cohomology of [[Eilenberg-Mac Lane space]]s, which also determine all [[cohomology operation]]s. Basic work on this area was done by Eilenberg and Mac Lane, and by H. Cartan, while the theory of cohomology operations, including [[Steenrod operation]]s, is itself a large area. The reference below shows the problems in the 3-stage systems. For homotopy 3-types, the algebraic model of [[crossed square]]s is more explicit than the corresponding Postnikov system, and more calculable. However, not much work has been done on, say, [[cohomology operation]]s using the algebraic model of $n$-fold groupoids, and it is not clear if that would help. \hypertarget{for_simplicial_sets_3}{}\subsubsection*{{For simplicial sets}}\label{for_simplicial_sets_3} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[Kan complex]] and $\{X(n)\}$ the model for its Postnikov tower from prop. \ref{SimplPostnikovByCoskeletonQuotient}. For any vertex $v \in X_0$ write $K(n)$ for the [[pullback]] \begin{displaymath} \itexarray{ K(n) &\to& * \\ \downarrow && \downarrow^{\mathrlap{b}} \\ X(n) &\to& X(n-1) } \,. \end{displaymath} Let $K(\pi_n (X,v), n)$ be the [[Eilenberg-MacLane object]] on the $n$-[[homotopy group]] of $X$. Then there is a [[weak homotopy equivalence]] \begin{displaymath} K(n) \stackrel{\simeq}{\to} K(\pi_n(X,v),n) \,. \end{displaymath} \end{prop} This appears for instance as \hyperlink{GoerssJardine}{GoerssJardine, corollary VI 3.7}. \begin{proof} Since $K(n) \to K(n-1)$ is a [[Kan fibration]] by prop. \ref{SimplPostnikovByCoskeletonQuotient} the pullback $K(n)$ is the [[homotopy fiber]] of $X(n) \to X(n-1)$. \end{proof} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} There are analogues in other setups, e.g. \begin{itemize}% \item [[Postnikov system in triangulated category|Postnikov systems in triangulated categories]] \item [[motivic homotopy theory]] (M. Levine, \href{http://www.math.uiuc.edu/K-theory/0692}{The Postnikov tower in motivic stable homotopy theory}). \end{itemize} \hypertarget{postnikov_tower_in_an_category}{}\subsubsection*{{Postnikov tower in an $(\infty,1)$-category}}\label{postnikov_tower_in_an_category} We may think of [[Top]] as being the archetypical [[(∞,1)-category]]. In every [[(∞,1)-category]] there is a notion of [[n-truncated object in an (∞,1)-category|n-truncated object]] and accordingly a notion of \begin{itemize}% \item [[Postnikov tower in an (∞,1)-category]]. \end{itemize} The traditional case of Postnikov towers in [[Top]] is a special case of this more general concept. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[tower of homotopy fibers]], [[Adams tower]] \item [[n-image]], [[n-epimorphism]], [[n-monomorphism]] \item [[Postnikov invariant]]/[[k-invariant]] \item [[k-ary factorization system]] \item [[chromatic tower]], [[Taylor tower]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook reference is section 8 of \begin{itemize}% \item [[Peter May]], \emph{Simplicial methods in algebraic topology} (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}) \end{itemize} and section VI of \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]} \end{itemize} Orginal references include \begin{itemize}% \item [[M. M. Postnikov]], \emph{Determination of the homology groups of a space by means of the homotopy invariants}, Doklady Akad. Nauk SSSR (N.S.) 76: 359--362 (1951) \item [[George Whitehead]], \emph{Elements of homotopy theory}, chapter 9 \item Donald W. Kahn, \emph{The spectral sequence of a Postnikov system}, Comm. Math. Helv. 40, n.1, 169--198, 1965 \href{http://dx.doi.org/10.1007/BF02564370}{doi} \item P. I. Booth, \emph{An explicit classification of three-stage Postnikov towers}, Homology, homotopy and applications 8 (2006), No. 2, 133--155 \item [[G. J. Ellis]] and R. Mikhailov, \emph{A colimit of classifying spaces}, \href{http://www.arxiv.org/abs/0804.3581}{arXiv:0804.3581}. \end{itemize} Probably the earliest treatment of Postnikov systems for [[simplicial sets]] is in \begin{itemize}% \item [[John Moore|J. C. Moore]], \emph{Semisimplicial complexes and Postnikov systems}, Symposium Internacional de Topologia Algebraica, Mexico City, 1958, pp. 232-247, \end{itemize} and as a result, in that context, they are sometimes referred to as \textbf{Moore-Postnikov systems} The coskeleton construction for the Postnikov tower of a Kan complex is already in \begin{itemize}% \item [[M. Artin]], [[B. Mazur]], \emph{\'E{}tale homotopy}, (1969)(Lecture Notes in Maths. 100). \end{itemize} Another classical article that amplifies the expression of Postnikov towers in terms of [[coskeleta]] is \begin{itemize}% \item [[William Dwyer]], [[Dan Kan]], \emph{An obstruction theory for diagrams of simplicial sets} (\href{http://www.nd.edu/~wgd/Dvi/ObstructionTheoryForDiagrams.pdf}{pdf}), from 1984. \end{itemize} Analogous remarks are also in \begin{itemize}% \item [[John Duskin]] \emph{Simplicial matrices and the nerves of weak $n$-categories I: Nerves of bicategories} , TAC \textbf{9} no. 2, (2002). (\href{http://www.emis.de/journals/TAC/volumes/9/n10/9-10abs.html}{web}) \end{itemize} reviewed around page 302 in \begin{itemize}% \item [[Tibor Beke]], \emph{Higher ech theory}, K-Theory, 32(4):293--322 (2004) (\href{http://www.math.uiuc.edu/K-theory/0646/}{web}) \end{itemize} Discussion for [[spectra]] includes \begin{itemize}% \item [[Stefan Schwede]], chapter II, section 8 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} Discussion in [[homotopy type theory]] is in \begin{itemize}% \item [[Univalent Foundations Project]], section 7.6 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} Discussion for [[homotopy types]] modeled by [[crossed complexes]]/[[strict ∞-groupoids]] is in \begin{itemize}% \item M. Bullejos, E. Faro, and M. A. Garc\'i{}a-Munoz, \emph{Postnikov Invariants of Crossed Complexes}, Journal of Algebra Volume 285, Issue 1, 1 March 2005, Pages 238--291 (\href{http://arxiv.org/abs/math/0409339}{arXiv:math/0409339}). \end{itemize} and for $n$-[[hypergroupoids]] in the thesis, \begin{itemize}% \item M. A. Garc\'i{}a-Munoz, 2003, \emph{Un aceramiento algebraico a la theor\'i{}a de Torres de Postnikov}, \href{http://0-hera.ugr.es.adrastea.ugr.es/tesisugr/16555065.pdf}{thesis}, Universidad de Granada. \end{itemize} This also contains a good discussion of the link with twisted cohomology and homotopy colimits. A pedagogical introduction to Postnikov systems with an eye towards their generalization from [[homotopy types]] to [[n-categories]] is in \begin{itemize}% \item [[John Baez]], [[Mike Shulman]], \emph{[[Lectures on n-Categories and Cohomology]]} \end{itemize} [[!redirects Postnikov tower]] [[!redirects Postnikov towers]] [[!redirects Postnikov decomposition]] [[!redirects Postnikov systems]] [[!redirects Postnikov approximation]] [[!redirects Postnikov approximations]] [[!redirects Moore-Postnikov system]] [[!redirects Moore-Postnikov systems]] \end{document}