\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Pr(infinity,1)Cat} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{unstable_version}{Unstable version}\dotfill \pageref*{unstable_version} \linebreak \noindent\hyperlink{stable_version}{Stable version}\dotfill \pageref*{stable_version} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{adjoint_functor_theorem}{Adjoint functor theorem}\dotfill \pageref*{adjoint_functor_theorem} \linebreak \noindent\hyperlink{homobjects}{Hom-objects}\dotfill \pageref*{homobjects} \linebreak \noindent\hyperlink{EmbeddingIntoCat}{Embedding into $(\infty,1)Cat$}\dotfill \pageref*{EmbeddingIntoCat} \linebreak \noindent\hyperlink{tensor_product}{Tensor product}\dotfill \pageref*{tensor_product} \linebreak \noindent\hyperlink{colimits}{Colimits}\dotfill \pageref*{colimits} \linebreak \noindent\hyperlink{as_vector_spaces}{As $\infty$-vector spaces}\dotfill \pageref*{as_vector_spaces} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} $Pr(\infty,1)Cat$ is the [[(∞,1)-category]] of [[locally presentable (∞,1)-categories]] and [[(∞,1)-colimit]]-preserving [[(∞,1)-functors]] between them ([[Lawvere distributions]]). Recall that a [[presentable (∞,1)-category]] is a [[localization of an (∞,1)-category|localization]] of a [[(∞,1)-category of (∞,1)-presheaves]]. In particular it has all small [[colimits]]. An [[(∞,1)-functor]] $C \times D \to E$ from the cartesian [[product]] of two presentable $(\infty,1)$-categories is \emph{bilinear} if it respects colimits in both variables. It turns out that there is a \emph{universal} such bilinear functor \begin{displaymath} C \times D \to C \otimes D \,, \end{displaymath} which thereby defines a [[tensor product of presentable (∞,1)-categories]]. This defines a [[monoidal (infinity,1)-category|monoidal structure]] on presentable $(\infty,1)$-categories, which is in fact [[symmetric monoidal (infinity,1)-category|symmetric]]. The collection $Pr(\infty,1)Cat$ of presentable $(\infty,1)$-cateories with colimit-preserving [[(∞,1)-functors]] between them (i.e. with ``\emph{linear}'' functors between them!), is an $(\infty,1)$-generalization of the category $Set Mod$ of ordinary categories and [[bimodules]] or [[profunctors]], or [[distributors]] between them. See [[distributor]] and in particular the discussion there about the equivalent reformulation in terms of colimit-preserving functors. Using $Pr(\infty,1)Cat$ with its notion of ``linearity'' one obtains a very general notion of $\infty$-linear algebra. This is described at [[geometric ∞-function theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{unstable_version}{}\subsubsection*{{Unstable version}}\label{unstable_version} Write $Pr(\infty,1)Cat_1$ for the [[sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-categories]] whose \begin{itemize}% \item objects are [[presentable (∞,1)-category|presentable (∞,1)-categories]]; \item morphisms are [[(∞,1)-colimit]]-preserving [[(∞,1)-functors]]. \end{itemize} \hypertarget{stable_version}{}\subsubsection*{{Stable version}}\label{stable_version} The symmetric monoidal structure on presentable $(\infty,1)$-categories restricts to one on presentable [[stable (∞,1)-category|stable (∞,1)-categories]]. The tensor unit of stable presentable $(\infty,1)$-categories is the [[stable (∞,1)-category of spectra]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{adjoint_functor_theorem}{}\subsubsection*{{Adjoint functor theorem}}\label{adjoint_functor_theorem} A functor between locally presentable $(\infty,1)$-categories: \begin{itemize}% \item is a [[left adjoint]] if and only if it preserves small colimits (hence, in particular, is accessible), and \item is a [[right adjoint]] if and only if it preserves small limits and is accessible. \end{itemize} \hypertarget{homobjects}{}\subsubsection*{{Hom-objects}}\label{homobjects} \begin{defn} \label{}\hypertarget{}{} For $C, D \in Pr(\infty,1)Cat$, let \begin{displaymath} Func^L(C,D) \subset Func(C,D) \end{displaymath} be the full [[sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-functors]] on those that preserve all small [[(∞,1)-colimits]] (equivalently, are left adjoints). \end{defn} Evidently $Func^L(C,D)$ would be the hom-$(\infty,1)$-category of an enhancement of $Pr(\infty,1)Cat$ to an $(\infty,2)$-category; its maximal sub-$\infty$-groupoid is the hom-$\infty$-groupoid $Pr(\infty,1)Cat(C,D)$. \begin{prop} \label{}\hypertarget{}{} For all $C,D$ we have that $Func^L(C,D)$ is itself locally presentable. \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.3.8]]. \hypertarget{EmbeddingIntoCat}{}\subsubsection*{{Embedding into $(\infty,1)Cat$}}\label{EmbeddingIntoCat} \begin{prop} \label{LimitsAndColimits}\hypertarget{LimitsAndColimits}{} All small [[limit in a quasi-category|limits and colimits]] exists in $Pr(\infty,1)Cat$. The limits are preserved by the embedding $Pr(\infty,1)Cat \hookrightarrow$ [[(∞,1)Cat]]. \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.3.13]]. \hypertarget{tensor_product}{}\subsubsection*{{Tensor product}}\label{tensor_product} \begin{prop} \label{}\hypertarget{}{} Let $C_1, \cdots, C_n$ be a finite collection of locally presentable $(\infty,1)$-categories. There exists a locally presentable $(\infty,1)$-category $C_1 \otimes \cdots \otimes C_n$ and an [[(∞,1)-functor]] \begin{displaymath} C_1 \times \cdots \times C_n \to C_1 \otimes \cdots \otimes C_n \end{displaymath} (the [[tensor product]]) such that \begin{enumerate}% \item it preserves [[(∞,1)-colimit]]s in each variable; \item for every $D \in Pr(\infty,1)Cat$, composition with $f$ produces an [[equivalence of (∞,1)-categories]] \end{enumerate} \begin{displaymath} Func_{(\infty,1)}^L(C_1 \otimes \cdots \otimes C_n,D) \stackrel{\simeq}{\to} Func^{L}_{(\infty,1)}(C_1 \times \cdots \times C_n,D) \hookrightarrow Func^{}_{(\infty,1)}(C_1 \times \cdots \times C_n,D) \end{displaymath} onto the full [[sub-(∞,1)-category]] of those functors, that preserves colimits in each argument. \end{prop} This is (\hyperlink{LurieNoncommutative}{Lurie, NA, theorem 4.1.4}). This tensor product makes $Pr(\infty,1)Cat$ a [[symmetric monoidal (∞,1)-category]]. Indeed it is even closed, since the hom-objects $Func^L$ supply adjoints to the tensor product. The definition of the tensor product is easy: $C \otimes D = Cts(C^{op},D)$, where $Cts$ denotes the category of continuous (small-limit-preserving) functors. Equivalently, this is $Cocts(C,D^{op})^{op}$, where $Cocts$ denotes the category of cocontinuous (small-colimit-preserving) functors; it is tempting to write this as $Func^L(C,D^{op})^{op}$, but note that $D^{op}$ is not itself locally presentable. However, $D^{op}$ is nevertheless cocomplete, so any cocontinuous functor $C \to D^{op}$ has a right adjoint. To show that $Cts(C^{op},D)$ is locally presentable, recall that $C \simeq Ind_\kappa A$ for some small $\kappa$-cocomplete $A$. Thus $Cts(C^{op},D) \simeq \kappa Cts (A^{op},D)$, where $\kappa Cts$ denotes the category of $\kappa$-limit-preserving functors; this is an accessible localization of $Fun(A^{op},D)$ and hence locally presentable. To show that $Cts(C^{op},D)$ has the right universal property, we compute \begin{displaymath} \begin{aligned} Func^L(C,Func^L(D,E)) &\simeq \kappa CoCts (A,Func^L(D,E)) & \quad \text{(by the universal property of }\; C = Ind_\kappa(A))\\ &\simeq \kappa Cts (A^{op},Func^L(D,E)^{op})^{op} &\quad \text{(by taking opposites)}\\\\ &\simeq \kappa Cts (A^{op},CtsAcc(E,D))^{op} &\quad \text{(by the adjoint functor theorem)}\\ &\simeq CtsAcc(E,\kappa Cts (A^{op},D))^{op} &\quad (*)\\ &\simeq Func^L(\kappa Cts (A^{op},D),E) &\quad \text{(by the adjoint functor theorem)} \end{aligned} \end{displaymath} To justify the step $(*)$, note that both sides are equivalent to some subcategory of functors $A^{op} \times E \to D$, and in both cases part of the requirement is that $\kappa$-limits be preserved in the $A^{op}$-variable and all small limits be preserved in the $E$-variable. The remaining condition on the left is that for each $a\in A$ the corresponding functor $E\to D$ is accessible, i.e. preserves $\lambda_a$-filtered colimits for some cardinal $\lambda_a$. On the right, the remaining condition is that the [[currying|curried]] functor $E\to \kappa Cts (A^{op},D)$ is accessible, i.e. preserves $\mu$-filtered colimits for some cardinal $\mu$. Since $\mu$-filtered colimits commute with $\kappa$-limits as long as $\mu\ge \kappa$, such colimits in $\kappa Cts (A^{op},D)$ are pointwise, so we are at least talking about the same colimits, so the right-hand condition implies the left (take each $\lambda_a = \mu$). On the other hand, because $A$ is small, if the left-hand condition holds we can take $\mu = \sup_{a\in A} \lambda_a$ to make the right-hand condition hold. \hypertarget{colimits}{}\subsubsection*{{Colimits}}\label{colimits} Above we remarked that the forgetful functor $Pr(\infty,1)Cat \to (\infty,1)Cat$ preserves limits. It does not preserve colimits, but $Pr(\infty,1)Cat$ does have colimits; they are constructed by passing to right adjoints and taking the limit there. In particular, this implies there are some cases in which colimits coincide with limits. For instance: \begin{prop} \label{}\hypertarget{}{} Small coproducts in $Pr(\infty,1)Cat$ coincide with small products. \end{prop} \begin{proof} Let $\prod_i C_i$ be a product in $Pr(\infty,1)Cat$. Then we have \begin{displaymath} \begin{aligned} Func^L(\prod_i C_i, D) &\simeq Cts(D, \prod_i C_i)\\ &\simeq \prod_i Cts(D,C_i)\\ &\simeq \prod_i Func^L(C_i,D) \end{aligned} \end{displaymath} \end{proof} To be precise, the next result requires an enhancement of $Pr(\infty,1)Cat$ to an $(\infty,2)$-category so that we can talk about [[powers]] and [[copowers]] by small $(\infty,1)$-categories. However, the proof gives an explicit universal property that makes sense without having to define that whole $(\infty,2)$-category. \begin{prop} \label{}\hypertarget{}{} The [[copower]] of $C\in Pr(\infty,1)Cat$ by a small $(\infty,1)$-category $A$ is $C^{A^{op}}$. \end{prop} \begin{proof} Let $P A$ denote the [[presheaf (∞,1)-category]] on $A$. This is its free cocompletion, so we have $Func^L(P A,C) \simeq C^A$. Dually, $(P A)^{op}$ is the free completion of $A^{op}$, so we have $Cts((P A)^{op},C) \simeq C^{A^op}$. Now we have: \begin{displaymath} \begin{aligned} Func^L(C,D)^A &\simeq Func^L(C,D^A)\\ &\simeq Func^L(C,Func^L(P A,D))\\ &\simeq Func^L(C \otimes P A, D)\\ &\simeq Func^L(Cts((P A)^{op},C),D)\\ &\simeq Func^L(C^{A^op},D) \end{aligned} \end{displaymath} \end{proof} In general, this sort of argument should work for all lax colimits of lax functors; for instance, [[Kleisli objects]] should also coincide with [[Eilenberg-Moore objects]] (though this also requires enhancing $Pr(\infty,1)Cat$ to an $(\infty,2)$-category). The corresponding 1-categorical fact is that in any [[bicategory]] with [[local colimits]] (colimits in each hom-category distributed over by composition), lax colimits of lax functors are also lax limits. \hypertarget{as_vector_spaces}{}\subsection*{{As $\infty$-vector spaces}}\label{as_vector_spaces} In some context it makes good sense to think of $Pr(\infty,1)Cat$ as a model for an $(\infty,1)$-category of ``$\infty$-vector spaces'', or at least ``$\infty$-abelian groups''. For instance, the fact that the $(\infty,2)$-category $Pr(\infty,1)Cat$ has local colimits, making certain limits and colimits coincide, is a sort of categorification of the fact that of [[Vect]] and [[Ab]] are [[additive categories]] in which finite products and coproducts coincide. More on this analogy is at [[integral transforms on sheaves]]. Here a small $(\infty,1)$-category $S$ is to be thought of as a \emph{basis} and the locally presentable $(\infty,1)$-category $C \hookrightarrow PSh_{(\infty,1)}(C)$ as the $\infty$-vector space spanned by this basis. The colimits in $C$ play the role of addition of vectors and the fact that morphisms in $Pr(\infty,1)Cat$ are colimit-presserving means that they play the role of \emph{linear} maps between vector spaces. This is described also at [[Lawvere distribution]]. The monoidal product $\otimes : Pr(\infty,1)Cat \times Pr(\infty,1)Cat \to Pr(\infty,1)Cat$ plays the role of the [[tensor product]] of vector spaces, with a morphism out of $C \otimes D$ being a bilinear morphism out of $C \times D$, and the fact that $Pr(\infty,1)Cat$ is closed monoidal reflects the fact that [[Vect]] is closed monoidal. The construction of the tensor product as $Cts(C^{op},D)$ corresponds to the fact that, at least for finite-dimensional $V$, we have $V\otimes W \cong Hom(V^\ast,W)$. (A related decategorification of $Pr(\infty,1)Cat$ is the category [[Sup]] of [[suplattices]], which can also be thought of as analogous to abelian groups or vector spaces.) \hypertarget{applications}{}\subsubsection*{{Applications}}\label{applications} Combined with the fact that the embedding $Pr(\infty,1)Cat \hookrightarrow (\infty,1)Cat$ preserves limits (prop. \ref{LimitsAndColimits}), this yields some useful statements. For instance with $Pr(\infty,1)Cat$ regarded as $\infty Vect$, for any [[∞-group]] $G$ with [[delooping]] [[∞-groupoid]] $\mathbf{B}G$, we may think of an [[(∞,1)-functor]] $\rho : \mathbf{B}G \to Pr(\infty,1)Cat$ as a linear [[representation]] of $G$: the single object of $\mathbf{B}G$ is sent to a presentable $(\infty,1)$-category $V$ and the morphisms in $\mathbf{B}G$ then define an [[action]] of $G$ on that. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[PrCat]] \item [[Ho(CombModCat)]] \item [[2Ab]], [[2Ring]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The $(\infty,1)$-category $Pr(\infty,1)Cat$ is introduced in section 5.5.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} The monoidal structure on $Pr(\infty,1)Cat$ is described in section 4.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Noncommutative Algebra]]} \end{itemize} That this is in fact a symmetric monoidal structure is discussed in section 6 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Commutative Algebra]]} \end{itemize} (see proposition 6.14 and remark 6.18). This monoidal structure is exhibited as a restriction of a monoidal structure on all cocomplete $(\infty,1)$-categories in section 4.8 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]}. \end{itemize} [[!redirects symmetric monoidal (infinity,1)-category of presentable (infinity,1)-categories]] [[!redirects symmetric monoidal (∞,1)-category of presentable (∞,1)-categories]] [[!redirects symmetric monoidal (infinity,1)-category of presentable (inf]] [[!redirects Pr(∞,1)Cat]] category: category \end{document}