\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Puiseux series} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{puiseuxnewton_expansions}{Puiseux-Newton expansions}\dotfill \pageref*{puiseuxnewton_expansions} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $K$ be a [[field]]. A \textbf{Puiseux series} with [[coefficients]] in $K$ is a formal [[Laurent series]] \begin{displaymath} f(t) = \sum_{k \geq m} a_k t^{k/r} \qquad (1) \end{displaymath} where $r$ is a positive [[integer]], $m$ is an integer, and each $a_k$ belongs to $K$. Somewhat more abstractly but also more meaningfully, if $\mathbb{N}_{\cdot}$ is the [[poset]] of positive integers ordered by divisibility (so that $1$ is the least element), then the field of Puiseux series is the [[filtered colimit]] of the diagram of fields \begin{displaymath} F: \mathbb{N}_{\cdot} \to Field \end{displaymath} where each $F(n)$ is the field of [[Laurent series]] $K((t))$, but where $F(m) \to F(n)$ (in case $m|n$) is the field [[homomorphism]] taking $f(t)$ to $f(t^{n/m})$. The field of Puiseux series carries a [[valuation ring|valuation]] whose values are in the ordered group of [[rational number|rationals]] $(\mathbb{Q}, +)$: for $f(t)$ as in (1), $v(f)$ is the least exponent $k/r$ for which $a_k \neq 0$. \hypertarget{puiseuxnewton_expansions}{}\subsection*{{Puiseux-Newton expansions}}\label{puiseuxnewton_expansions} Puiseux series were in essence considered by [[Isaac Newton]], who developed a method of expanding algebraic functions as Puiseux series, based on an analogue of [[Newton's method]] of approximating roots. Here is a sample theorem: \begin{theorem} \label{Puiseux}\hypertarget{Puiseux}{} If $K$ is [[algebraically closed field|algebraically closed]] and has [[characteristic]] 0, then the field of Puiseux series over $K$ is the algebraic closure of the field of Laurent series over $K$. \end{theorem} \begin{proof} It is enough to show that every degree $n$ extension $E$ of the field of Laurent series $K((x))$ is of the form $K((x^{1/n}))$. For this, it suffices that the integral closure $B$ of $K[ [x] ]$ in $E$ be of the form $K[ [x^{1/n}] ]$. Generally speaking, let $A$ be a complete DVR ([[valuation ring|discrete valuation ring]]) with maximal ideal $\mathfrak{m}_A$ and residue class field $k_A$, and let $F$ be its field of fractions. Let $E$ be a degree $n$ extension of $F$, and let $B$ be the integral closure of $A$ in $E$. Then $B$ is also a complete DVR. We may write the ideal $\mathfrak{m}_A B$ of $B$ as $\mathfrak{m}_B^e$ where $e$ is the \emph{ramification index}, and we have \begin{displaymath} n = deg_F E = rank_A B = rank_{A/\mathfrak{m}_A} B/\mathfrak{m}_A B = dim_{k_A} B/\mathfrak{m}_B^e = e \cdot dim_{k_A} k_B \end{displaymath} where the last equation holds because $\mathfrak{m}_B^i/\mathfrak{m}_B^{i+1} \cong k_B$ as $k_B$-modules and therefore also as $k_A$-modules. In the case $A = K[ [x] ]$ where $k_A = K$, we have that $dim_{k_A} k_B = 1$ since $K$ is algebraically closed, and therefore $e = n$. In other words, $(x)B = \mathfrak{m}_B^n$, so we can write $x = u \pi^n$ where $\pi$ generates the maximal ideal of $B$ and $u$ is a unit of $B$. The residue class $\bar{u} \in K$ has an $n^{th}$ root (again by algebraic closure); in fact a simple root since $char(K) = 0$. By [[Hensel's lemma]], this lifts to an $n^{th}$ root of $u$ in $B$. The element $u^{1/n} \pi$ is thus an $n^{th}$ root of $x$, and is a generator of the maximal ideal of $B$. Writing this element as $y = x^{1/n}$, the ring $K[ [y] ] = A[x^{1/n}] \hookrightarrow B$ is an $A$-submodule of full rank $n$ and integrally closed (being abstractly isomorphic to $A$, which is [[integral closure|integrally closed]] because it's a [[principal ideal domain]] and therefore a [[unique factorization domain]]), so that $K[ [y] ] = B$, as was to be shown. \end{proof} \begin{uexample} (Intend to solve for $y$ in $y^3 - x y + 1 = 0$ as a Puiseux series in $x$.) \end{uexample} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} Other rings of generalized power series include: \begin{itemize}% \item [[Novikov field]] \item [[Hahn series]] \item [[Ribenboim power series]] \end{itemize} Hahn series are a special kind of Ribenboim power series, but Puiseux and Novikov series are not. However, they are all instances of the linearization of a [[finiteness space]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{http://en.wikipedia.org/wiki/Puiseux_series}{Puiseux series} \end{itemize} The sketched proof of theorem \ref{Puiseux} was extracted from notes on a seminar by Boyarchenko on local class field theory: \begin{itemize}% \item Mitya Boyarchenko, Kottwitz Seminar Lectures, (U. Michigan, Winter 2011). (\href{http://www.math.lsa.umich.edu/seminars/kottwitz/HieuNgoLocalCFT.pdf}{pdf}) \end{itemize} and the reader may refer to the classic text by Serre for a fuller treatment: \begin{itemize}% \item Jean-Pierre Serre, \emph{Local Fields} (trans. Marvin J. Greenberg), Graduate Texts in Math. 67, Springer 1980. \end{itemize} For a noncommutative generalization see \begin{itemize}% \item D. Grigoriev, \emph{Analogue of Newton-Puiseux series for non-holonomic D-modules and factoring}, Moscow Math. J. \textbf{9}, 2009, 775--800, \href{http://logic.pdmi.ras.ru/~grigorev/pub/puiseux_journal.pdf}{pdf}; MPIM2008-6, \href{http://www.mpim-bonn.mpg.de/preblob/3537}{pdf} \end{itemize} Other references \begin{itemize}% \item Jan Kiwi, \emph{Puiseux series dynamics of Quadratic rational maps}, \href{http://arxiv.org/abs/1106.0059}{arxiv/1106.0059} \item Luis Felipe Tabera, \emph{On real tropical bases and real tropical discriminants}, \href{http://arxiv.org/abs/1311.2211}{arxiv/1311.2211} \end{itemize} \begin{quote}% We explore the concept of real tropical basis of an ideal in the field of real Puiseux series. We show explicit tropical bases of zero-dimensional real radical ideals, linear ideals and hypersurfaces coming from combinatorial patchworking. But we also show that there exist real radical ideals that do not admit a tropical basis. As an application, we show how to compute the set of singular points of a real tropical hypersurface. i.e. we compute the real tropical discriminant. \end{quote} \begin{itemize}% \item Evelia Garc\'i{}a Barroso, Pedro Daniel Gonz\'a{}lez P\'e{}rez, Patrick Popescu-Pampu, \emph{Variations on inversion theorems for Newton-Puiseux series}, \href{http://arxiv.org/abs/1606.08029}{arxiv/1606.08029} \end{itemize} [[!redirects Newton-Puiseux series]] \end{document}