\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{QFT with defects} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DefinitionGeneral}{General}\dotfill \pageref*{DefinitionGeneral} \linebreak \noindent\hyperlink{DefectsFromBrokenSymmetry}{Topological defects from spontaneously broken symmetry}\dotfill \pageref*{DefectsFromBrokenSymmetry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{general_3}{General}\dotfill \pageref*{general_3} \linebreak \noindent\hyperlink{in_2d_field_theory}{In 2d field theory}\dotfill \pageref*{in_2d_field_theory} \linebreak \noindent\hyperlink{in_chernsimons_theory}{In Chern-Simons theory}\dotfill \pageref*{in_chernsimons_theory} \linebreak \noindent\hyperlink{TopologicalDefectsInGaugeTheories}{Topological defects in gauge theories with broken symmetry}\dotfill \pageref*{TopologicalDefectsInGaugeTheories} \linebreak \noindent\hyperlink{in_solid_state_physics}{In solid state physics}\dotfill \pageref*{in_solid_state_physics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A ([[prequantum field theory|pre]]-)[[quantum field theory|quantum]] [[field theory]] \emph{with defects} is, roughly a [[field theory]] that assigns data not just to plain [[manifolds]]/[[cobordisms]], but to spaces that may carry certain singularities and/or colorings. At the locus of such a singularity the [[bulk]] field theory may then undergo transitions. Such defects are known by many names. In [[codimension]] 1 they are often called [[domain walls]]. If they are [[boundaries]] they are often called \emph{[[branes]]}, the corresponding domain walls are then sometimes called [[bi-branes]]. Examples of Dimension-1 defects are [[Wilson lines]] and [[cosmic strings]] (at least in [[gauge theory]]) and dimension-0 defects are often called [[monopoles]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{DefinitionGeneral}{}\subsubsection*{{General}}\label{DefinitionGeneral} A plain $n$-dimensional local [[FQFT]] (a [[bulk]] field theory) is a [[monoidal (∞,n)-functor|symmetric monoidal]] [[(∞,n)-functor]] from the [[(∞,n)-category of cobordisms]]. \begin{displaymath} Z : Bord_n \to \mathcal{C}^\otimes \,. \end{displaymath} If one replaces plain [[cobordisms]] here with cobordisms $Bord_n^{Def}$ ``with singularities'' including [[boundaries]] and [[corners]] but also partitions labeled in a certain index set $Def$, one calls a morphism \begin{displaymath} Z : Bord_n^{Def} \to \mathcal{C} \end{displaymath} a TQFT \emph{with defects}. A general formalization is in (\hyperlink{Lurie}{Lurie, section 4.3}), see at \emph{\href{cobordism+hypothesis#ForCobordismsWithSingularities}{Cobordism theorem -- For cobordisms with singuarities (boundaries/branes and defects/domain walls)}}. See also (\hyperlink{DavydovRunkelKong}{Davydov-Runkel-Kong} and \hyperlink{CarquevilleRunkelSchaumann}{Carqueville-Runkel-Schaumann}). Such a morphism carries data as follows: \begin{itemize}% \item for each label in $Def$ of codimension 0 there is an ordinary [[bulk]] field theory; \item for each label in $Def$ of codimension 1 data on how to ``connect'' the two TQFTs on both sides \item etc. \end{itemize} So one may think of the codimension $k$ colors as \emph{defects} where the TQFT that one is looking at changes its nature. In particular, when the QFT on one side of the defect is trivial, then the defect behaves like a \emph{boundary condition} for the remaining QFT. Since at least for $n=2$ QFT such boundary conditions are also called \emph{[[branes]]}, defects are also called \emph{[[bi-branes]]}. The statement of the \textbf{cobordism theorem with singularities} (\hyperlink{Lurie}{Lurie, theorem 4.3.11}) is essentially the following: Given a [[symmetric monoidal (∞,n)-category]] $\mathcal{C}^\otimes$, then for every choice of [[pasting diagram]] of [[k-morphisms]] for all $k$, there is a type of manifolds with singularity $Def$, such that $Bord_n^Def$ is the free symmetric monoidal $(\infty,n)$-category on this data, hence such that TFTs with defects $(Bord_n^Def)^\otimes \to \mathcal{C}^\otimes$ are equivalently given by realizing such a pasting diagram in $\mathcal{C}$, where each of the given [[k-morphism]] appears as the value of a codimension $(n-k)$-defect. (See also \hyperlink{Lurie}{Lurie, remark 4.3.14}). \hypertarget{DefectsFromBrokenSymmetry}{}\subsubsection*{{Topological defects from spontaneously broken symmetry}}\label{DefectsFromBrokenSymmetry} \begin{quote}% under construction \end{quote} An old notion of \emph{defects} in field theory -- well preceeding the \hyperlink{DefinitionGeneral}{above} general notion in the context of [[FQFT]] -- is that of \textbf{[[topological defects]] in the [[vacuum]] structure of [[gauge theories]] that exhibit [[spontaneous symmetry breaking]] (such as a [[Higgs mechanism]]).} A comprehensive review in in (\hyperlink{VilenkinShellard94}{Vilenkin-Shellard 94}. Steps towards conceptually systematizing these broken-symmetry defects and their interaction are made in \hyperlink{PreskillVilenkin92}{Preskill-Vilenkin 92}. We now discuss this may be translated to and formalized in the general [[FQFT]] definition \hyperlink{DefinitionGeneral}{above} along the lines of (\hyperlink{FiorenzaValentino}{Fiorenza-Valentino}, \hyperlink{FSS}{FSS}). Let $G$ be a [[Lie group]], to be thought of as the (local or global) [[gauge group]] of some [[gauge theory]]. Let $H \hookrightarrow G$ a [[subgroup]], to be thought of as the subgroup of global symmetries preserved by some [[vacuum]] configuration (which ``[[spontaneous symmetry breaking|spontaneously breaks]]'' the symmetry from $G$ to $H$, the archetypical example is the [[Higgs mechanism]]). Then the space of such vacuum configurations is the [[coset]] space $G/H$. So given a [[manifold]] $X$ ([[spacetime]]), [[vacuum]] configuratons are given by [[functions]] $X \to G/H$. Hence $G/H_1$ is the ``[[moduli space]] of vacua'' or ``vacuum space'' in this context. The functions $X \to G/H$ are to be [[smooth functions]] in the [[bulk]] of spacetime. If they are allowed to be non-smooth or even non-[[continuous function|continuous]] along given strata of $X$, then these are called \textbf{defects} in the sense of broken gauge symmetry. In particular (with counting adapted to $dim X = 4$) \begin{itemize}% \item if $X \to G/H$ is not smooth but is smooth on the pre-image of each element of $\pi_0(G/H)$ and becomes a smooth function on $X-S_1$ where $S_1 \hookrightarrow X$ is a [[codimension]]-1 [[submanifold]], then $S_1$ is said to be a [[domain wall]] for vacuum configurations. \item if $X \to G/H$ is not smooth but becomes smooth on $X-S_2$, where $S_2$ is a codimension-2 submanifold, then $S_2$ is calld a [[cosmic string]]-defect of the vacuum configurations; \item if $X \to G/H$ is not smooth but becomes smooth on $X-S_3$, where $S_3$ is a codimension-3 submanifold, then $S_3$ is calld a [[monopole]]-defect of the vacuum configurations. \end{itemize} \begin{quote}% hm, need to fine-tune the technical conditions here, to make the following statement come out right\ldots{} \end{quote} So \begin{itemize}% \item [[domain walls]] can appear when $\pi_0(G/H)$ is non-trivial; \item [[cosmic strings]] can appear when $\pi_1(G/H)$ is non-trivial; \item [[monopoles]] can appear when $\pi_2(G/H)$ is non-trivial. \end{itemize} Next consider a sequence of [[subgroups]] \begin{displaymath} H_2 \hookrightarrow H_1 \hookrightarrow H_0 \coloneqq G \end{displaymath} to be thought of as coming from two consecutive steps of [[spontaneous symmetry breaking]], the first one down to $H_1$ at some [[energy]]-scale $E_1$, and the second at some lower energy scale $E_2 \lt E_1$. Then we say that vacuum defects at energy $E_2$ of codimension-$k$ which wind around an element $\pi_k(H_1/H_2)$ are \textbf{metastable} if they become unstabe at energy $E_1$, hence if their image in $\pi_k(H_0/H_2)$ is trivial. So if we add to the singular cobordism category the $k$-morphism which is the $k$-dimenional unit cube with an open $k$-[[ball]] removed, then the boundary field data for metastable codimension $n-k$-defects is \begin{displaymath} \itexarray{ [0,1]^k - D^k &\to & \Pi(H_1/H_2) \\ \downarrow &\swArrow& \downarrow \\ [0,1]^k &\to& \Pi(H_0/H_2) &\to& \Pi(H_0/H_1) } \end{displaymath} we have a [[homotopy fiber sequence]] \begin{displaymath} \Pi(H_1/H_2) \to \Pi(H_0/H_2) \to \Pi(H_0/H_1) \,. \end{displaymath} This induces a [[long exact sequence of homotopy groups]] \begin{displaymath} \cdots \to \pi_{k+1}(H_0/H_1) \to \pi_k(H_1/H_2) \to \pi_k(H_0/H_2) \to \pi_k(H_0/H_1) \to \pi_{k-1}(H_1/H_2) \to \cdots \,. \end{displaymath} So for every metastable defect of codimension $n-k$ given by $c \in ker(\pi_k(H_1/H_2) \to \pi_k(H_0/H_2))$ there is an element in $\pi_{k+1}(H_0/H_1)$ of one codimension higher. One says (\hyperlink{PreskillVilenkin92}{Preskill-Vilenkin 92}) that the codimenion $(n-k)$-defect may end on that codimension $(n-k-1)$-defect. (\ldots{}) In order to formalize this we introduce, following the [[cobordism theorem]] with singularities, cells in $Span_n(\mathbf{H})$ which label spontaneous-symmetriy-breaking defects as well as their defects-of-defects which exhibit their decay by higher codimension defects. Consider a span of the form \begin{displaymath} \itexarray{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &\leftarrow& [\Pi(S^{k-1}), \Pi(H_1/H_2)] &\rightarrow& \ast } \,. \end{displaymath} Comparing this to the span that comes from the ``cap'' $S^{k-1} \to D^{k} \leftarrow \emptyset$ in the theory at energy level $E_2$, which is just \begin{displaymath} \itexarray{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &\leftarrow& [\Pi(D^{k}), \Pi(H_1/H_2)] &\rightarrow& \ast } \end{displaymath} shows that the former models a $k$-disk which is not filled with spacetime, but nevertheless closes the disk. This is the defect given as a removal of a piece of spacetime. In order to formalize how these defects may decay at higher energy, consider next a [[span]] of [[field (physics)|field]] configurations of the form \begin{displaymath} \itexarray{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &\leftarrow& [\Pi(S^{k}), \Pi(H_0/H_1)] &\rightarrow& [\ast, \Pi(H_0/H_2)] } \,. \end{displaymath} Comparing again to the span that comes from the ``cap'' $S^{k-1} \to D^{k} \leftarrow \emptyset$ in the theory at energy level $E_2$, which is just \begin{displaymath} \itexarray{ [\Pi(S^{k-1}), \Pi(H_1/H_2)] &\leftarrow& [\Pi(D^{k}), \Pi(H_1/H_2)] &\rightarrow& \ast } \end{displaymath} shows that the former models a $k$-disk whose center point carries a singularity: the fields at the bounding $S^{k-1}$ take values in the moduli space of the ambient theory $\Pi(H_1/H_2)$, but then at the tip of the ``cap'' there is a ``field insertion'' of a field with values in $\Pi(H_0/H_2)$. Hence this labels a defect of codimension $k$. To construct such a decay-process span that captures the above story from \hyperlink{PreskillVilenkin92}{Preskill-Vilenkin 92}, consider the following diagram: \begin{displaymath} \itexarray{ && [\Pi(S^{k}), \Pi(H_0/H_1)] \\ && \downarrow \\ && [\Pi(S^{k-1}), \Omega\Pi(H_0/H_1)] \\ & \swarrow && \searrow \\ [\Pi(S^{k-1}), \Pi(H_1/H_2)] && (pb) && [\Pi(D^k), \Pi(H_0/H_2)] & \simeq & [\ast, \Pi(H_0/H_2)] \\ & \searrow & & \swarrow \\ && [\Pi(S^{k-1}), \Pi(H_0/H_2)] } \end{displaymath} This may be read as follows: \begin{enumerate}% \item on the far left $[\Pi(S^k), \Pi(H_1/H_2)]$ is the space of fields of the ambient theory at energy scale $E_2$ around the defect; \item the bottom left map is the ``fluctuation'' map that sends these fields to fields at the higher energy scale $E_1$; \item the bottom right map exhibt the possible ``decays'': a lift through this map takes a field configuration that winds around a $k$-ball and contracts it through that $k$-ball, hence going forth and back through the bottom two maps corresponds to carrying a defect over the energy barrier from $E_2$ to $E_1$ and there having it decay away. \item these decaying configurations are therefore given by the [[homotopy fiber product]] of the bottom two functions, which is $[\Pi(S^{k-1}), \Omega\Pi(H_0/H_1)]$, as indicated. But this space is really given by field configurations at energy scale $E_1$ that wind around a $(k+1)$-ball, as shown at the very top. \end{enumerate} Hence the top part of this diagram is a span that exhibits a defect-of-defects which tells just the story that (\hyperlink{PreskillVilenkin92}{Preskill-Vilenkin 92}) is telling: a codimension-$k$ defect of the low energy theory decays at higher energy, and the decay is witnessed by the appearance of a codimension $(k+1)$-defect of the high energy theory. \begin{displaymath} \itexarray{ && {high\;energy \atop codim-(k+1)\;defects} \\ && \downarrow \\ && {low\;energy\;codim-k\;defects \atop with\;their\;decay\;processes} \\ & \swarrow && \searrow \\ {low\;energy \atop codim-k\;defects} && (pb) && {high\;energy \atop decay\;processes} \\ & {}_{\mathllap{tunnel}}\searrow & & \swarrow_{\mathrlap{apply}} \\ && {codim-k\;defects \atop raised\;to\;higher\;energy} } \end{displaymath} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include field theory with boundaries and defects - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} A general formulation via an [[(∞,n)-category of cobordisms]] with defects is in section 4.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} Defect TQFTs as 1-functors on stratified decorated bordisms are discussed in \begin{itemize}% \item [[Alexei Davydov]], [[Ingo Runkel]], [[Liang Kong]], \emph{Field theories with defects and the centre functor} in [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} AMS, 2011 \item [[Nils Carqueville]], [[Ingo Runkel]], [[Gregor Schaumann]], \emph{Orbifolds of n-dimensional defect TQFTs}, (\href{http://arxiv.org/abs/1705.06085}{arXiv:1705.06085}) \end{itemize} Details in dimension 2 and 3 are discussed in \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{Topological Defects and Classification of Local TQFTs in Low Dimension}, [[Oberwolfach Workshop, June 2009 -- Strings, Fields, Topology]] (\href{https://ncatlab.org/nlab/files/SchommerPriesDefects.pdf}{pdf}) \end{itemize} Discussion of defects in [[prequantum field theory]], hence for [[coefficients]] in an [[(∞,n)-category of spans]] is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Alessandro Valentino]], \emph{Boundary conditions in local TFTs} (in preparation) \end{itemize} \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]] et. al, \emph{[[schreiber:Higher Chern-Simons local prequantum field theory]]} \end{itemize} \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \hypertarget{general_3}{}\paragraph*{{General}}\label{general_3} Examples in physics of interaction of defects of various dimension is discussed in \begin{itemize}% \item Muneto Nitta, \emph{Defect formation from defect--anti-defect annihilations}, Phys. Rev. D85:101702,2012 (\href{http://arxiv.org/abs/1205.2442}{arXiv:1205.2442}) \end{itemize} \hypertarget{in_2d_field_theory}{}\paragraph*{{In 2d field theory}}\label{in_2d_field_theory} \begin{itemize}% \item Defects in 2-dimensional [[conformal field theory]] have a long history in real-world application, for instance in [[Kramers-Wannier duality]] \begin{itemize}% \item [[Jürg Fröhlich]], [[Jürgen Fuchs]], [[Ingo Runkel]], [[Christoph Schweigert]], \emph{Kramers-Wannier duality from conformal defects} (\href{http://arxiv.org/abs/cond-mat/0404051}{arXiv:cond-mat/0404051}) \item Fr\"o{}hlich, Fuchs, Runkel, Schweigert, \emph{Duality and defects in rational conformal field theory} (\href{http://arxiv.org/abs/hep-th/0607247}{arXiv}) \end{itemize} \item Defects in 2-dimension TFT have been studied a lot in the context of genus-0 TFT, where they are described using the language of [[planar algebra]]s. \begin{itemize}% \item See the discussion at \href{http://golem.ph.utexas.edu/category/2008/09/planar_algebras_tfts_with_defe.html}{Planar Algebras, TFTs with Defects} for a start. \end{itemize} \end{itemize} Lecture notes include \begin{itemize}% \item [[Nils Carqueville]], \emph{Lecture notes on 2-dimensional defect TQFT} (\href{http://arxiv.org/abs/1607.05747}{arXiv:1607.05747}) \end{itemize} \hypertarget{in_chernsimons_theory}{}\paragraph*{{In Chern-Simons theory}}\label{in_chernsimons_theory} \begin{itemize}% \item An old example is the class of [[Turaev-Reshetikhin TQFT]], which is a functor on 3-dimensional [[cobordisms]] with codimension 3 and 2 defects. This is supposed to be the would-be result of [[Chern-Simons theory]], where the defect lines are the original [[Wilson lines]] in this context. \end{itemize} Defects in [[Chern-Simons theory]] and related systems are discussed in \begin{itemize}% \item [[Davide Gaiotto]], [[Edward Witten]], \emph{S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory} (\href{http://arxiv.org/abs/0807.3720}{arXiv:0807.3720}) \item [[Anton Kapustin]], Mikhail Tikhonov, \emph{Abelian duality, walls and boundary conditions in diverse dimensions}, JHEP 0911:006,2009 (\href{http://arxiv.org/abs/0904.0840}{arXiv:0904.0840}) \item [[Anton Kapustin]], [[Natalia Saulina]], \emph{Surface operators in 3d TFT and 2d Rational CFT} in [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} AMS, 2011 \end{itemize} In the context of the [[3d-3d correspondence]]: \begin{itemize}% \item Dongmin Gang, Nakwoo Kim, Mauricio Romo, Masahito Yamazaki, \emph{Aspects of Defects in 3d-3d Correspondence}, J. High Energ. Phys. (2016) (\href{https://arxiv.org/abs/1510.05011}{arXiv:1510.05011}) \end{itemize} Defects in [[higher dimensional Chern-Simons theory]] on [[manifolds with corners]] are discussed in \begin{itemize}% \item [[Hisham Sati]], \emph{Corners in M-theory}, J.Phys.A44:255402,2011 (\href{http://arxiv.org/abs/1101.2793}{arXiv:1101.2793}) \end{itemize} \hypertarget{TopologicalDefectsInGaugeTheories}{}\paragraph*{{Topological defects in gauge theories with broken symmetry}}\label{TopologicalDefectsInGaugeTheories} The following references discuss the traditional notion of \emph{[[topological defects]] in the [[vacuum]] structure of gauge theory with [[spontaneous symmetry breaking]]} such as [[domain walls]], [[cosmic strings]] and [[monopoles]]. Discussion of ``topological defects in [[gauge theory]]'' in higher codimension is in \begin{itemize}% \item [[John Preskill]], [[Alexander Vilenkin]], \emph{Decay of Metastable Topological Defects}, Phys. Rev. D47 : 2324-2342 (1993) (\href{http://arxiv.org/abs/hep-ph/9209210}{arXiv:hep-ph/9209210}) \end{itemize} \begin{itemize}% \item [[Alexander Vilenkin]], E.P.S. Shellard, \emph{Cosmic strings and other topological defects}, Cambridge University Press (1994) \end{itemize} \hypertarget{in_solid_state_physics}{}\paragraph*{{In solid state physics}}\label{in_solid_state_physics} Defects field theory motivated from [[solid state physics]] is discussed in \begin{itemize}% \item [[Alexei Kitaev]], [[Liang Kong]], \emph{Models for gapped boundaries and domain walls} Commun. Math. Phys. 313 (2012) 351-373 (\href{http://arxiv.org/abs/1104.5047}{arXiv:1104.5047}) \end{itemize} [[!redirects defect]] [[!redirects defects]] [[!redirects field theory with singularities]] [[!redirects defect field theory]] [[!redirects defect field theories]] [[!redirects defect QFT]] [[!redirects defect QFTs]] \end{document}