\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Quillen bifunctor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{monoidal_and_enriched_model_categories}{Monoidal and enriched model categories}\dotfill \pageref*{monoidal_and_enriched_model_categories} \linebreak \noindent\hyperlink{CoendsOverTensors}{Lift to coends over tensors}\dotfill \pageref*{CoendsOverTensors} \linebreak \noindent\hyperlink{bousfieldkan_type_homotopy_colimits}{Bousfield-Kan type homotopy colimits}\dotfill \pageref*{bousfieldkan_type_homotopy_colimits} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{(left) Quillen [[bifunctor]]} is a [[functor]] of two variables between [[model category|model categories]] that respects combined [[cofibrations]] in its two arguments in a suitable sense. The notion of Quillen bifunctor enters the definition of [[monoidal model category]] and of [[enriched model category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} \textbf{(Quillen bifunctor)} Let $C, D, E$ be [[model category|model categories]]. A [[functor]] $F : C \times D \to E$ is a \textbf{Quillen bifunctor} if it satisfies the following two conditions: \begin{enumerate}% \item for any cofibration $i : c \to c'$ in $C$ and cofibration $j : d \to d'$ in $D$, the induced ([[pushout product]]) morphism \begin{displaymath} F(c', d) \coprod_{F(c,d)} F(c,d') \to F(c', d') \end{displaymath} is a cofibration in $E$, which is a weak equivalence if either $i$ or $j$ is a weak equivalence \item it preserves [[colimit]]s separately in each variable \end{enumerate} \end{defn} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} In full detail the [[pushout]] appearing in the first condition is the one sitting in the pushout diagram \begin{displaymath} \itexarray{ F(c,d) &\stackrel{F(Id,j)}{\to}& F(c,d') \\ \;\;\downarrow^{F(i,Id)} && \downarrow \\ F(c',d) &\stackrel{}{\to}& F(c', d) \coprod_{F(c,d)} F(c,d') } \,. \end{displaymath} In particular, if $i = (\emptyset \hookrightarrow c)$ we have $F(\emptyset, d) = F(\emptyset, d') = \emptyset$ (since the [[initial object]] is the [[colimit]] over the empty diagram and $F$ is assumed to preserve colimits) and the above pushout diagram reduces to \begin{displaymath} \itexarray{ \emptyset &{\to}& \emptyset \\ \;\;\downarrow && \downarrow \\ F(c,d) &\stackrel{}{\to}& F(c,d) } \,. \end{displaymath} Therefore for $c$ a cofibrant object the condition is that $F(c,-) : D \to E$ preserves cofibrations and acyclic cofibrations. Similarly for $d$ fibrant the condition is that $F(-,d) : C \to E$ preserves cofibrations and acyclic cofibrations. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{uprop} Let $\otimes : C \times D \to E$ be an [[adjunction of two variables]] between model categories and assume that $C$ and $D$ are [[cofibrantly generated model categories]]. Then $\otimes$ is a Quillen bifunctor precisely if it satisfies its axioms on generating (acyclic) cofibrations, i.e. if for $f : c_1 \to c_2$ and $g : d_1 \to d_2$ we have for the morphism \begin{displaymath} (c_1 \otimes d_2) \coprod_{c_1 \otimes d_1} (c_2 \otimes d_1) \to c_2 \otimes d_2 \end{displaymath} is \begin{itemize}% \item a cofibration if both $f$ and $g$ are generating cofibrations; \item an acyclic cofibration if one is a generating cofibration and the other a generating acyclic cofibration. \end{itemize} \end{uprop} This appears for instance as Corollary 4.2.5 in \begin{itemize}% \item [[Mark Hovey]], \emph{Model Categories} \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{monoidal_and_enriched_model_categories}{}\subsubsection*{{Monoidal and enriched model categories}}\label{monoidal_and_enriched_model_categories} \begin{itemize}% \item In a [[monoidal model category]] $C$ the [[tensor product]] $\otimes : C \times C \to C$ is required to be a Quillen bifunctor. \item An [[enriched model category]] $D$ over the [[monoidal model category]] $C$ is one that is [[power]]ed and [[copower]]ed over $D$ such that the [[copower]] $\otimes : D \times C \to D$ is a Quillen bifunctor. \end{itemize} \hypertarget{CoendsOverTensors}{}\subsubsection*{{Lift to coends over tensors}}\label{CoendsOverTensors} The following proposition asserts that under mild conditions a Quillen bifunctor on $C \times D$ lifts to a Quillen bifunctor on [[functor category|functor categories]] of functors to $C$ and $D$. \begin{uprop} Let $\otimes : C \times D \to E$ be a Quillen functor. Let \begin{itemize}% \item $S$ be a [[Reedy category]] and take the [[functor category|functor categories]] $[S,C]$ and $[S^{op},C]$ be equipped with the corresponding[[Reedy model structure]]. \item \emph{or} assume that $C$ and $D$ are [[combinatorial model category|combinatorial model categories]] and let $[S,C]$ and $[S^{op},A]$ be equipped, respectively with the projective and the injective globel [[global model structure on functors|model structure on functor categories]]. \end{itemize} Then the [[coend]] [[functor]] \begin{displaymath} \int^{S} (- \otimes -) : [S,C]\times [S^{op},D] \to E \end{displaymath} is again a 'Quillen bifunctor. \end{uprop} This \hyperlink{Lurie}{Lurie, prop. A.2.9.26 with remark A.2.9.27}. It follows that the corresponding left [[derived functor]] computes the corresponding [[homotopy coend]]. \hypertarget{bousfieldkan_type_homotopy_colimits}{}\subsubsection*{{Bousfield-Kan type homotopy colimits}}\label{bousfieldkan_type_homotopy_colimits} This is an application of the above application. Let $C$ be a [[category]] and $A$ be a [[simplicial model category]]. Let $F : C \to A$ be a functor and let ${*} : C^{op} \to A$ be the functor constant on the terminal object. Consider the [[global model structure on functors]] $[C^{op},SSet]_{proj}$ and $[C^{op},A]_{inj}$ and let $Q({*})_{proj}$ be a cofibrant replacement for ${*}$ in $[C^{op},Set]_{proj}$ and $Q_{inj}(F)$ a cofibrant replacement for $F$ in $[C,A]_{inj}$. One show that the [[homotopy colimit]] over $F$ is computed as the [[coend]] or [[weighted limit]] \begin{displaymath} hocolim F = \int Q_{proj}({*}) \cdot Q_{inj}(F) \,. \end{displaymath} One possible choice is \begin{displaymath} Q_{proj}({*}) = N(-/C)^{op} \,. \end{displaymath} That this is indeed a projectively cofibrant resulution of the constant on the [[terminal object]] is for instance proposition 14.8.9 of \begin{itemize}% \item Hirschhorn, \emph{Model categories and their localization} . \end{itemize} For the case that $C = \Delta^{op}$ this is the classical choice by Bousfield and Kan, see [[Bousfield-Kan map]]. Assume that $A$ takes values in cofibrant objects of $A$, then it is already cofibrant in the injective model structure $[C,A]_{inj}$ on functors and we can take $Q_{inj}(F) = F$. Then the above says that \begin{displaymath} hocolim F = \int N(-/C)^\op \cdot F \,. \end{displaymath} For $C = \Delta$ this is the classical prescription by Bousfield-Kan for homotopy colimits, see also the discussion at [[weighted limit]]. Using the above proposition, it follows in particular explicitly that the homotopy colimit preserves degreewise cofibrations of functors over which it is taken. A nice discussion of this is in (\hyperlink{Gambino}{Gambino}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[two-variable adjunction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Appendix A.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \item [[Nicola Gambino]], \emph{Weighted limits in simplicial homotopy theory} (\href{http://www.crm.cat/Publications/08/Pr790.pdf}{pdf}) \end{itemize} \end{document}