\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Quillen equivalence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{TwoOutOfThree}{2-out-of-3}\dotfill \pageref*{TwoOutOfThree} \linebreak \noindent\hyperlink{presentation_of_equivalence_of_categories}{Presentation of equivalence of $(\infty,1)$-categories}\dotfill \pageref*{presentation_of_equivalence_of_categories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] is a context in which we can do [[homotopy theory]] or some generalization thereof; two model categories are `the same' for this purpose if they are Quillen equivalent. For example, the classic version of homotopy theory can be done using either [[topological space|topological spaces]] or [[simplicial sets]]. There is a model category of topological spaces, and a model category of simplicial sets, and they are Quillen equivalent. In short, Quillen equivalence is the right notion of [[equivalence]] for [[model category|model categories]] --- and most importantly, this notion is weaker than [[equivalence of categories]]. The work of Dwyer--Kan, Bergner and others has shown that Quillen equivalent model categories [[presentable (infinity,1)-category|present]] equivalent [[(infinity,1)-category|(infinity,1)-categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ and $D$ be [[model category|model categories]] and let \begin{displaymath} (L \dashv R) : C \stackrel{\overset{R}{\leftarrow}}{\underset{L}{\to}} D \end{displaymath} be a [[Quillen adjunction]] with $L$ [[left adjoint]] to $R$. Write $Ho C$ and $Ho D$ for the corresponding [[homotopy category of a model category|homotopy categories]]. By the discussion there, $Ho C$ may be regarded as obtained by first passing to the full [[subcategory]] on cofibrant objects and then [[localization|inverting]] [[weak equivalences]], and $L$ (being a left Quillen adjoint) preserves weak equivalences between cofibrant objects. Thus, $L$ induces a functor \begin{displaymath} \mathbb{L} : Ho C \to Ho D \end{displaymath} between the [[homotopy category|homotopy categories]], called its (total) left [[derived functor]]. Similarly (but dually), $R$ induces a (total) right derived functor $\mathbb{R} : Ho D \to Ho C$. See at \emph{\href{homotopy+category+of+a+model+category#DerivedFunctors}{homotopy category of a model category -- derived functors}} for more. \begin{defn} \label{}\hypertarget{}{} A [[Quillen adjunction]] $(L \dashv R)$ is a \textbf{Quillen equivalence} if the following equivalent conditions are satisfied. \begin{itemize}% \item The total left [[derived functor]] $\mathbb{L} : Ho(C) \to Ho(D)$ is an [[equivalence of categories|equivalence]] of the [[homotopy categories]]; \item The total right [[derived functor]] $\mathbb{R} : Ho(D) \to Ho(C)$ is an [[equivalence of categories|equivalence]] of the [[homotopy categories]]; \item For every cofibrant object $c \in C$ and every fibrant object $d \in D$, a morphism $c \to R(d)$ is a weak equivalence in $C$ precisely when the [[adjunct]] morphism $L(c) \to d$ is a weak equivalence in $D$. \item \begin{enumerate}% \item The [[derived adjunction unit]] is a weak equivalence, in that for every cofibrant object $c\in C$, the composite $c \overset{\eta_c}{\to} R(L(c)) \to R(L(c)^{fib})$ (of the [[adjunction unit]] with a [[fibrant replacement]] $R(L(c) \stackrel{\simeq}{\to} L(c)^{fib})$) is a weak equivalence in $C$, \item The [[derived adjunction counit]] is a weak equivalence, in that for every fibrant object $d\in D$, the composite $L(R(d)^{cof}) \to L(R(d)) \overset{\epsilon_d}{\to} d$ (of the [[adjunction counit]] with [[cofibrant replacement]] $L(R(d)^{cof} \stackrel{\simeq}{\to} R(d))$) is a weak equivalence in $D$. \end{enumerate} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} Not every equivalence between homotopy categories of model categories lifts to a Quillen equivalence. An interesting counterexample is given for instance in (\hyperlink{DuggerShipley09}{Dugger-Shipley 09}). \end{remark} Here are further characterizations: \begin{prop} \label{InCaseTheRightAdjointCreatesWeakEquivalences}\hypertarget{InCaseTheRightAdjointCreatesWeakEquivalences}{} If in a [[Quillen adjunction]] $\itexarray{\mathcal{C} &\underoverset{\underset{R}{\to}}{\overset{L}{\leftarrow}}{\bot}& \mathcal{D}}$ the [[right adjoint]] $R$ ``creates weak equivalences'' (in that a morphism $f$ in $\mathcal{C}$ is a weak equivalence precisly if $R(f)$ is) then $(L \dashv R)$ is a Quillen equivalence precisely already if for all cofibrant objects $d \in \mathcal{D}$ the plain [[adjunction unit]] \begin{displaymath} d \overset{\eta}{\longrightarrow} R (L (d)) \end{displaymath} is a weak equivalence. \end{prop} \begin{proof} Generally, $(L \dashv R)$ is a Quillen equivalence precisely if \begin{enumerate}% \item for every cofibrant object $d\in \mathcal{D}$, the ``derived adjunction unit'', hence the composite \begin{displaymath} d \overset{\eta}{\longrightarrow} R(L(d)) \overset{R(j_{L(d)})}{\longrightarrow} R(P(L(d))) \end{displaymath} (of the [[adjunction unit]] with image under $R$ of any fibrant replacement $L(d) \underoverset{\in W}{j_{L(d)}}{\longrightarrow} R(P(L(d)))$) is a weak equivalence; \item for every fibrant object $c \in \mathcal{C}$, the ``derived adjunction counit'', hence the composite \begin{displaymath} L(Q(R(c))) \overset{L(p_{R(c)})}{\longrightarrow} L(R(c)) \overset{\epsilon}{\longrightarrow} c \end{displaymath} (of the [[adjunction counit]] with the image under $L$ of any cofibrant replacement $Q R(c)\underoverset{\in W}{p_{R(c)}}{\longrightarrow} R(c)$ is a weak equivalence in $D$. \end{enumerate} Consider the first condition: Since $R$ preserves the weak equivalence $j_{L(d)}$, by [[two-out-of-three]] the composite in the first item is a weak equivalence precisely if $\eta$ is. Hence it is now sufficient to show that in this case the second condition above is automatic. Since $R$ also reflects weak equivalences, the composite in item two is a weak equivalence precisely if its image \begin{displaymath} R(L(Q(R(c)))) \overset{R(L(p_{R(c))})}{\longrightarrow} R(L(R(c))) \overset{R(\epsilon)}{\longrightarrow} R(c) \end{displaymath} under $R$ is. Moreover, assuming, by the above, that $\eta_{Q(R(c))}$ on the cofibrant object $Q(R(c))$ is a weak equivalence, then by [[two-out-of-three]] this composite is a weak equivalence precisely if the further composite with $\eta$ is \begin{displaymath} Q(R(c)) \overset{\eta_{Q(R(c))}}{\longrightarrow} R(L(Q(R(c)))) \overset{R(L(p_{R(c))})}{\longrightarrow} R(L(R(c))) \overset{R(\epsilon)}{\longrightarrow} R(c) \,. \end{displaymath} But by the formula for [[adjuncts]], this composite is the $(L\dashv R)$-adjunct of the original composite, which is just $p_{R(c)}$ \begin{displaymath} \frac{ L(Q(R(c))) \overset{L(p_{R(c)})}{\longrightarrow} L(R(c)) \overset{\epsilon}{\longrightarrow} c }{ Q(R(C)) \overset{p_{R(c)}}{\longrightarrow} R(c) } \,. \end{displaymath} But $p_{R(c)}$ is a weak equivalence by definition of cofibrant replacement. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{TwoOutOfThree}{}\subsubsection*{{2-out-of-3}}\label{TwoOutOfThree} Since [[equivalence of categories|equivalences of categories]] enjoy the [[category with weak equivalences|2-out-of-3-property]], so do Quillen equivalences. \hypertarget{presentation_of_equivalence_of_categories}{}\subsubsection*{{Presentation of equivalence of $(\infty,1)$-categories}}\label{presentation_of_equivalence_of_categories} [[sSet]]-[[enriched functor|enriched]] Quillen equivalences between [[combinatorial model categories]] present equivalences between the corresponding [[locally presentable (infinity,1)-categories]]. And every equivalence between these is presented by a Zig-Zag of Quillen equivalences. See there for more details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{TrivialQuillenEquivalence}\hypertarget{TrivialQuillenEquivalence}{} \textbf{(trivial [[Quillen equivalence]])} Let $\mathcal{C}$ be a [[model category]]. Then the [[identity functor]] on $\mathcal{C}$ constitutes a [[Quillen equivalence]] from $\mathcal{C}$ to itself: \begin{displaymath} \mathcal{C} \underoverset {\underset{id}{\longrightarrow}} {\overset{id}{\longleftarrow}} {\phantom{{}_{Qu}}\simeq_{Qu}} \mathcal{C} \end{displaymath} \end{example} \begin{proof} From \href{geometry+of+physics+--+categories+and+toposes#ComputationOfLeftRightDerivedFunctorsViaResolutions}{this prop.} it is clear that in this case the [[derived functors]] $\mathbb{L}id$ and $\mathbb{R}id$ both are themselves the [[identity functor]] on the [[homotopy category of a model category]], hence in particular are an [[equivalence of categories]]. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Quillen adjunction]] \item [[Quillen reflection]] \item [[simplicial Quillen adjunction]] \item \textbf{Quillen equivalence} \item [[monoidal Quillen adjunction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For standard references see at \emph{[[model category]]}. An example of an equivalence of [[homotopy categories]] of model categories which does not lift to a Quillen equivalence is in \begin{itemize}% \item [[Daniel Dugger]], [[Brooke Shipley]], \emph{A curious example of triangulated-equivalent model categories which are not Quillen equivalent}, Algebraic \& Geometric Topology 9 (2009) (\href{http://homepages.math.uic.edu/~bshipley/dugger.shipley.curious.example.pdf}{pdf}) \end{itemize} [[!redirects Quillen equivalences]] \end{document}