\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Quiv} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_a_topos}{As a topos}\dotfill \pageref*{as_a_topos} \linebreak \noindent\hyperlink{Omega_graph}{The subobject classifier}\dotfill \pageref*{Omega_graph} \linebreak \noindent\hyperlink{double_negation}{(Double) negation}\dotfill \pageref*{double_negation} \linebreak \noindent\hyperlink{some_subcategories_and_adjunctions}{Some subcategories and adjunctions}\dotfill \pageref*{some_subcategories_and_adjunctions} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{$Quiv$} or \textbf{$DiGraph$} is the category of [[quivers]] or (as category theorists often call them) [[directed graphs]]. It can be viewed as the default categorical model for the concept of a category of graphs. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We can define a quiver to be a functor $G\colon X^{op} \to Set$, where $X^{op}$ is the [[category]] with an [[object]] $0$, an object $1$ and two [[morphisms]] $s, t\colon 1 \to 0$, along with [[identity morphisms]]. This lets us efficiently define $Quiv$ as the category of [[presheaves]] on $X$, where: \begin{itemize}% \item objects are [[functors]] $G\colon X^{op} \to Set$, \item morphisms are [[natural transformations]] between such functors. \end{itemize} In other words, $Quiv$ is the [[functor category]] from this $X^{op}$ to [[Set]]. \hypertarget{as_a_topos}{}\subsection*{{As a topos}}\label{as_a_topos} The category $Quiv = Set^{X^{op}}$, being a category of [[presheaves]], is a [[topos]]. The [[representable functors]] $X(-, 0), X(-, 1)$ may be pictured as the ``generic figures'' (generic vertex, generic edge) that occur in directed graphs: \begin{displaymath} X(-, 0) = \bullet, \qquad X(-, 1) = (x \stackrel{e}{\to} y) \end{displaymath} and from this picture we easily see that $X(-, 0)$ has two subobjects $\emptyset, \bullet$ whereas $X(-, 1)$ has five: $empty, x, y, (x, y), (x \stackrel{e}{\to} y)$. Being a presheaf topos has a lot of nice consequences and instantly yields answer to questions like whether finite [[limit|limits]] of directed graphs exist or how to construct the [[exponential object|exponential]] quiver $Y^X$ of all homomorphisms $X\to Y$ between two quivers $X,Y$ in $Quiv$ since the answers are provided by topos theory. In the following subsections some of the topos structure in $Quiv$ is worked out explicitly. \hypertarget{Omega_graph}{}\subsubsection*{{The subobject classifier}}\label{Omega_graph} Knowing the subobjects of the representable functors in turn allows us to calculate the structure of the [[subobject classifier]] $\Omega$ since they correspond to the elements of the value of $\Omega$ at the corresponding objects of $X^{op}$ i.e. the set of vertices of $\Omega$ is $\Omega(0)=\{\emptyset,\bullet\}$ and the set of edges is $\Omega(1)=\{empty, x, y, (x, y), (x \stackrel{e}{\to} y)\}$. Whence pictured $\Omega$ is the quiver with two vertices and five edges that looks roughly like \begin{displaymath} \itexarray{ \emptyset & \underoverset{x}{y}{\rightleftarrows} & \bullet \\ \mathllap{empty} \circlearrowleft & & \circlearrowleft \circlearrowleft \mathrlap{x \stackrel{e}{\to} y} \\ & & \mathllap{(x, y)} } \end{displaymath} (so there is one loop labeled ``empty'' at the vertex $\emptyset$, and two loops at the vertex $\bullet$, one labeled $(x, y)$ and the other $x \stackrel{e}{\to} y$). How does $\Omega$ work? Suppose that $X\subseteq Y$ is a subgraph and $\chi_X:Y\to\Omega$ its characteristic map, then $\chi_X$ maps vertices of $Y$ not in $X$ to $\emptyset$ and vertices in $X$ to $\bullet$ (a vertex is either contained in a subgraph or not - the choice is binary and, accordingly, $\Omega$ needs two vertices to represent this). For edges the situation is more complicated since there are five ways (and, accordingly five edges in $\Omega$ to represent this) for an edge $z$ of $Y$ to be related to the subgraph $X$: the most straightforward is when $z$ has neither source nor target in $X$, such $z$ are definitely not in $X$ and are represented in $\Omega$ by the loop at $\emptyset$. Now suppose that $z$ has either source or target vertex in $X$ but not both: $\chi_X$ maps these to the maps $x,y$ between $\emptyset\rightleftarrows\bullet$, respectively. When $z$ has both source and target in $X$, the edge itself might or might not be in $X$, and the corresponding two cases are represented by the two loops at $\bullet$ , respectively, with $e$ representing the edges that are contained $X$. \hypertarget{double_negation}{}\subsubsection*{{(Double) negation}}\label{double_negation} The [[negation]] $\neg:\Omega\to \Omega$ is defined as the characteristic map of $\bot:1\to\Omega$. It specifies how \begin{displaymath} im(\bot)= \underoverset{{empty}}{\empty}{\circlearrowleft} \end{displaymath} sits as a subgraph in $\Omega$: since $\bullet$ is not $im(\bot)$ whereas $\empty$ is, $\neg$ interchanges the two vertices and, accordingly, all loops at $\bullet$ must go ${empty}$ . Conversely, $empty$ goes to $e$ (since it is fully contained in $im(\bot)$). Now $x$ has its target but not its source in $im(\bot)$ hence it goes to $y$ whereas $y$ has its source but not its target in $im(\bot)$ and therefor goes to $x$. Complementing a subobject $X\subseteq Y$ i.e. taking the subobject $\neg X$ of $Y$ that is classified by $\neg\circ\chi_X$ amounts to taking all vertices of $Y$ not in $X$ and all the edges in $Y$ between them. Whence the result $\neg\neg X$ of applying $\neg$ twice to $X\subseteq Y$ amounts to adding to $X$ all the edges of $Y$ that have source and target in $X$. This implies in turn that a subgraph $X\subseteq Y$ is [[dense subobject|dense]] for the [[double negation|double negation topology]] $\neg\circ\neg:\Omega\to\Omega$ , precisely when it contains all vertices of $Y$ since complementing twice will throw into $\neg\neg X$ all the edges in $Y$ between all the vertices in $X$. By definition, a quiver $X$ is [[separated object|separated]] for $\neg\neg$ when for every other quiver $Y$ and dense subobject $i:S\hookrightarrow Y$ and any map $f:S\to X$ there is at most one $g:Y\to X$ such that the following diagram commutes: \begin{displaymath} \itexarray{ S & & \\ i\downarrow &\searrow &f \\ Y &\underset{g}{\to} & X } \end{displaymath} A separated quiver $X$ is a $\neg\neg$-sheaf when such a unique $g$ always exists. Suppose that a quiver $X$ has a pair of parallel edges $w,z$. Then the subgraph $i:S\hookrightarrow X$ that is just like $X$ but has $w,z$ ommitted is dense in $X$. Let $\tau_{zw}:X\to X$ be the automorphism of $X$ that is just like the identity on $X$ except that it interchanges $w$ and $z$. Then $id_X\circ i=\tau_{zw}\circ i=i$ and one sees that $X$ is not separated. Conversely, let $X$ be a quiver with at most one edge $x\to y$ between any pair $(x,y)$ of vertices and $f:S\to X$ be a map with $i:S\hookrightarrow Y$ is dense in $Y$. Since $i$ is a bijection on the vertex sets of $S$ and $Y$, if a factorization of $f$ through $g:Y\to X$ and $i$ exists the effect of $g$ on the vertices is uniquely determined by $f$ but since in $X$ there is at most one edge between any pair of vertices the image of any edge $a\to b$ in $Y$ under $g$ is already fixed: it is the unique edge between $g(a)$ and $g(b)$. In particular, one sees that a separated object $X$ is a sheaf precisely when there exists exactly one edge between any pair of vertices since then arbitrary edges in arbitrary factors $Y$ can be mapped to the appropriate edge in $X$. To sum up: \begin{prop} \label{negneg_subcats}\hypertarget{negneg_subcats}{} A quiver $X$ is separated for the double negation topology $\neg\neg$ precisely if there exists at most an edge $a\to b$ between any pair $(a,b)$ of vertices. $X$ is a $\neg\neg$-sheaf precisely if there exists a unique edge $a\to b$ between any pair $(a,b)$. $\Box$ \end{prop} The corresponding full subcategories are denoted by $Sep_{\neg\neg}(Quiv)$ and $Sh_{\neg\neg}(Quiv)$ , respectively. By generalities, it follows that $Sep_{\neg\neg}(Quiv)$ is a [[quasitopos]] and $Sh_{\neg\neg}(Quiv)$ is a [[Boolean topos]]. Quivers that have at most one edge between any pair of vertices can be called `simple' with the caveat that contrary to (the usual concept of) a simple graph they are allowed to have loops. Similarly, $\neg\neg$-sheaves can be called `complete'. Since the edges of $\neg\neg$-separated quivers simply encode a binary endorelation on their vertex sets and being a morphism between $\neg\neg$-separated quivers then amounts to preserve that relation one sees that $Sep_{\neg\neg}(Quiv)$ and $Sh_{\neg\neg}(Quiv)$ are equivalent to the categories $Bin$ with objects $(X,\rho)$ where $X$ is a set and $\rho$ a binary endorelation on $X$, and, respectively, the category $TotalRel$ of sets equipped with the total relation. The latter can be identified with $Set$ since morphisms between sets equipped with the total relation behave just like ordinary functions between sets. \hypertarget{some_subcategories_and_adjunctions}{}\subsubsection*{{Some subcategories and adjunctions}}\label{some_subcategories_and_adjunctions} The inclusion $Sh_{\neg\neg}(Quiv)\hookrightarrow Sep_{\neg\neg}(Quiv)$ is actually an [[level|essential localisation]] since it corresponds (from the relational perspective) to the [[adjoint triple|adjoint string]] $e\dashv u\dashv t:Set\hookrightarrow Bin$ where $t$ maps a set $X$ to $(X,\tau_X)$ with $\tau_X$ the total relation on $X$, $u$ is the forgetful functor mapping $(X,\rho)$ to $X$ and, $e$ maps a set $X$ to $(X,\empty)$. Similarly, $Sh_{\neg\neg}(Quiv)\overset{i}{\hookrightarrow} Quiv$ is an essential subtopos: if we identify sheavification $r$ with the functor that maps a quiver to the quiver on the same vertex set with edge set the total relation on the vertex set, then $l\dashv r\dashv i$ where $l$ forgets the edges of a complete quiver. In particular, it follows then from general properties of the [[double negation|double negation topology]] that $Sh_{\neg\neg}(Quiv)$ is the [[Aufhebung]] of $0\dashv 1$. Whence, there exists indeed a notion of `codiscreteness' (= an Aufhebung of $0\dashv 1$) for quivers, namely `completeness', but it does not arise from a right adjoint to the [[section|section functor]] $\Gamma: Quiv\to Set$ that maps a quiver to its set of loops. Indeed, the adjoint string $\Pi\dashv\Delta\dashv\Gamma:Quiv\to Set$ that comes with the `discrete' inclusion $\Delta$ that maps a set to the quiver with vertex set $X$ and edge set precisely one loop for every vertex, is not a localisation since $\Pi\dashv\Delta$ is not a [[geometric morphism]] because $\Pi$ fails to preserve products. Furthermore, since it is a general result for presheaf toposes (cf. La Palme Reyes et al. \hyperlink{RRZ04}{2004}, p.204) that $\Gamma$ has a right adjoint $B$ precisely if a generic figure has a point and in the case of Quiv neither the generic vertex nor the generic edge contains a loop, we see that the functor $\Gamma:Quiv\to Set$ has no right adjoint. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[hypergraph]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item R. T. Bumby, D. M. Latch, \emph{Categorical Constructions in Graph Theory} , Internat. J. Math. \& Math. Sci. \textbf{9} no.1 (1986) pp.1-16. \item [[F. W. Lawvere]], \emph{Qualitative Distinctions between some Toposes of Generalized Graphs}, Cont. Math. \textbf{92} (1989) pp.261-299. \item M. La Palme Reyes, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Generic Figures and their Glueings}, Polimetrica Milano 2004. \item S. Vigna, \emph{A Guided Tour in the Topos of Graphs} , arXiv.0306394 (2003). (\href{https://arxiv.org/abs/math/0306394}{abstract}) \end{itemize} category: category [[!redirects Quiv]] [[!redirects DiGraph]] [[!redirects Digraph]] \end{document}