\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{RR field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesSelfDuality}{Self-duality and quadratic form}\dotfill \pageref*{ReferencesSelfDuality} \linebreak \noindent\hyperlink{IrrationalRRCharge}{Irrational RR-charge}\dotfill \pageref*{IrrationalRRCharge} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{RR field} or \emph{Ramond--Ramond field} is a [[gauge theory|gauge field]] appearing in [[supergravity|10-dimensional type II supergravity]]. Mathematically the RR field on a space $X$ is a [[cocycle]] in [[differential K-theory]] -- or rather, in full generality, in [[twisted differential K-theory|twisted differential]] [[KR-theory]] subject to a [[self-dual higher gauge field]] constrained encoded by a quadratic form defining an [[11-dimensional Chern-Simons theory]] on twisted differential KR cocycles. Accordingly, the [[field strength]] of the RR field, i.e. the image of the [[differential cohomology|differential K-cocycle]] in deRham cohomology, is an inhomogeneous even or odd differential form \begin{itemize}% \item in [[type IIA string theory]] \begin{displaymath} F_{RR} = R_0 + R_2 + \cdots \end{displaymath} \item in [[type IIB string theory]] \begin{displaymath} F_{RR} = R_1 + R_3 + \cdots \end{displaymath} \end{itemize} The components of this are sometimes called the RR forms. In the presence of a nontrivial [[Kalb–Ramond field]] the RR field is [[twisted cohomology|twisted]]: a cocycle in the corresponding [[twisted K-theory]]. Moreover, the RR field is constrained to be a [[self-dual higher gauge theory|self-dual]] differential K-cocycle in a suitable sense. [[!include electric-magnetic duality -- table]] The RR field derives its name from the way it shows up when the [[supergravity]] theory in question is derived as an effective background theory in [[string theory]]. From the [[sigma-model]] perspective of the string the RR field is the condensate of fermionic 0-mode excitations of the type II superstring for a particular choice of boundary conditons called the \emph{Ramond} boundary condititions. Since these boundary conditions have to be chosen for \emph{two} spinor components, the name appears twice. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[RR-field tadpole]] \item [[D-brane charge]] \item [[differential K-theory]] \item [[KK-theory]] \end{itemize} [[!include table of branes]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} For a quick review see for instance \begin{itemize}% \item [[Daniel Freed]], example 2.10 \emph{Dirac charge quantization and generalized differential cohomology} (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv}) \end{itemize} Discussion of the [[NSR-string|NSR]] [[string perturbation theory]] in RR-field background is in \begin{itemize}% \item [[David Berenstein]], Robert Leigh, \emph{Superstring Perturbation Theory and Ramond-Ramond Backgrounds}, Phys. Rev. D 60, 106002 (1999) (\href{https://arxiv.org/abs/hep-th/9904104}{arXiv:hep-th/9904104}) \end{itemize} \hypertarget{ReferencesSelfDuality}{}\subsubsection*{{Self-duality and quadratic form}}\label{ReferencesSelfDuality} The [[self-dual higher gauge field]] nature (see there for more) in terms of a [[quadratic form]] on [[differential K-theory]] is discussed originally around \begin{itemize}% \item [[Gregory Moore]], [[Edward Witten]], \emph{Self-Duality, Ramond-Ramond Fields, and K-Theory}, JHEP 0005:032,2000 (\href{http://arxiv.org/abs/hep-th/9912279}{arXiv:hep-th/9912279}) \end{itemize} and (\hyperlink{Freed00}{Freed 00}) for [[type I superstring theory]], and for [[type II superstring theory]] in \begin{itemize}% \item [[Edward Witten]], \emph{Duality Relations Among Topological Effects In String Theory}, JHEP 0005:031,2000 (\href{http://arxiv.org/abs/hep-th/9912086}{arXiv:hep-th/9912086}) \item [[Daniel Freed]], [[Michael Hopkins]], \emph{On Ramond-Ramond fields and K-theory}, JHEP 0005 (2000) 044 (\href{http://arxiv.org/abs/hep-th/0002027}{arXiv:hep-th/0002027}) \item D. Diaconescu, [[Gregory Moore]], [[Edward Witten]], \emph{$E_8$ Gauge Theory, and a Derivation of K-Theory from M-Theory}, Adv.Theor.Math.Phys.6:1031-1134,2003 (\href{http://arxiv.org/abs/hep-th/0005090}{arXiv:hep-th/0005090}), summarised in \emph{A Derivation of K-Theory from M-Theory} (\href{http://arxiv.org/abs/hep-th/0005091}{arXiv:hep-th/0005091}) \end{itemize} with more refined discussion in [[twisted differential K-theory|twisted differential]] [[KR-theory]] in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} See at \emph{[[orientifold]]} for more on this. The relation to [[11d Chern-Simons theory]] is made manifest in \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Type II Actions from 11-Dimensional Chern-Simons Theories} (\href{http://arxiv.org/abs/hep-th/0611020}{arXiv:hep-th/0611020}) \end{itemize} Review is in \begin{itemize}% \item [[Richard Szabo]], section 3.6 and 4.6 of \emph{Quantization of Higher Abelian Gauge Theory in Generalized Differential Cohomology} (\href{http://arxiv.org/abs/1209.2530}{arXiv:1209.2530}) \end{itemize} \hypertarget{IrrationalRRCharge}{}\subsubsection*{{Irrational RR-charge}}\label{IrrationalRRCharge} An argument that RR-charge may occur in [[irrational number|irrational]] ratios is due to \begin{itemize}% \item [[Constantin Bachas]], [[Michael Douglas]], [[Christoph Schweigert]], around (2.8) of \emph{Flux Stabilization of D-branes}, JHEP 0005:048,2000 (\href{https://arxiv.org/abs/hep-th/0003037}{arXiv:hep-th/0003037}) \end{itemize} In a sequence of followup articles, authors found this problematic and tried to make sense of it: \begin{itemize}% \item [[Washington Taylor]], \emph{D2-branes in B fields}, JHEP 0007 (2000) 039 (\href{https://arxiv.org/abs/hep-th/0004141}{arXiv:hep-th/0004141}) \end{itemize} \begin{quote}% In this article it was argued that the D0-brane charge arising from the integral over the D2-brane of the pullback of the B field is cancelled by the bulk contributions, but in this calculation it was implicitly assumed that the gauge field $C^{(1)}$ is constant. (from \hyperlink{Zhou01}{Zhou 01}) \end{quote} \begin{itemize}% \item Peter Rajan, \emph{D2-brane RR-charge on $SU(2)$}, Phys.Lett. B533 (2002) 307-312 (\href{https://arxiv.org/abs/hep-th/0111245}{arXiv:hep-th/0111245}) \item Jian-Ge Zhou, \emph{D-branes in B Fields}, Nucl.Phys. B607 (2001) 237-246 (\href{https://arxiv.org/abs/hep-th/0102178}{arXiv:hep-th/0102178}) \end{itemize} [[!redirects RR fields]] [[!redirects RR-field]] [[!redirects RR-fields]] [[!redirects Ramond-Ramond field]] [[!redirects Ramond–Ramond field]] [[!redirects Ramond--Ramond field]] [[!redirects Ramond-Ramond fields]] [[!redirects Ramond–Ramond fields]] [[!redirects Ramond--Ramond fields]] [[!redirects RR-charge]] \end{document}