\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{RR-field tadpole cancellation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{ForFractionalDBranes}{In plane and toroidal orientifolds}\dotfill \pageref*{ForFractionalDBranes} \linebreak \noindent\hyperlink{InTermsOfEquivariantKTheory}{In terms of equivariant K-theory / the representation ring}\dotfill \pageref*{InTermsOfEquivariantKTheory} \linebreak \noindent\hyperlink{TwistedTadpoleCancellation}{Local/twisted tadpole cancellation}\dotfill \pageref*{TwistedTadpoleCancellation} \linebreak \noindent\hyperlink{UntwistedTadpoleCancellation}{Global/untwisted tadpole cancellation}\dotfill \pageref*{UntwistedTadpoleCancellation} \linebreak \noindent\hyperlink{ExamplesForToroidalOrientifolds}{Examples for toroidal orientifolds}\dotfill \pageref*{ExamplesForToroidalOrientifolds} \linebreak \noindent\hyperlink{ExamplesForFractionalDBranes}{Examples of non-compact singularities}\dotfill \pageref*{ExamplesForFractionalDBranes} \linebreak \noindent\hyperlink{at_a_orientifold_singularity}{At a $\mathbb{Z}_2$-orientifold singularity}\dotfill \pageref*{at_a_orientifold_singularity} \linebreak \noindent\hyperlink{at_a_orientifold_singularity_2}{At a $\mathbb{Z}_4$-orientifold singularity}\dotfill \pageref*{at_a_orientifold_singularity_2} \linebreak \noindent\hyperlink{At2d4Singularity}{At a $2 D_4$-orientifold singularity}\dotfill \pageref*{At2d4Singularity} \linebreak \noindent\hyperlink{At2D6Singularity}{At a $2 D_6$-orientifold singularity}\dotfill \pageref*{At2D6Singularity} \linebreak \noindent\hyperlink{At2D8Singularity}{At a $2 D_8$-orientifold singularity}\dotfill \pageref*{At2D8Singularity} \linebreak \noindent\hyperlink{At2D10Singularity}{At a $2 D_{10}$-orientifold singularity}\dotfill \pageref*{At2D10Singularity} \linebreak \noindent\hyperlink{At2D12Singularity}{At a $2 D_{12}$-orientifold singularity}\dotfill \pageref*{At2D12Singularity} \linebreak \noindent\hyperlink{At2D14Singularity}{At a $2 D_{14}$-orientifold singularity}\dotfill \pageref*{At2D14Singularity} \linebreak \noindent\hyperlink{At2D16Singularity}{At a $2 D_{16}$-orientifold singularity}\dotfill \pageref*{At2D16Singularity} \linebreak \noindent\hyperlink{At2TSingularity}{At a $2 T$-orientifold singularity}\dotfill \pageref*{At2TSingularity} \linebreak \noindent\hyperlink{At2OSingularity}{At a $2 O$-orientifold singularity}\dotfill \pageref*{At2OSingularity} \linebreak \noindent\hyperlink{At2ISingularity}{At a $2 I$-orientifold singularity}\dotfill \pageref*{At2ISingularity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{examples_and_models}{Examples and Models}\dotfill \pageref*{examples_and_models} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the presence of [[D-branes]], plain [[type II string theory]] in fact has a [[quantum anomaly]] reflected on the [[worldsheet]] by [[tadpole]] [[Feynman diagrams]] in the [[string perturbation series]] for [[RR-fields]] $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``TadpoleCancellationFactorization.jpg'', ``width'': 600 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{BlumenhagenLustTheisen13}{Blumenhagen-Lüst-Theisen 13} \end{quote} and reflected in [[target spacetime]] by non-trivial total [[RR-field]] [[flux]] on [[compact topological space|compact spaces]] $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``RRTadpoleCancellation.jpg'', ``width'': 600 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{IbanezUranga12}{Ibanez-Uranga 12} \end{quote} This anomaly cancels if the [[D-branes]] are accompanied by a suitable collection of [[O-planes]], hence if one considers [[orientifold]] backgrounds (\hyperlink{Sagnotti88}{Sagnotti 88, pp. 5}, \hyperlink{GimonPolchinski96}{Gimon-Polchinski 96, section 3}). (For space-filling [[O-planes]] this means to consider [[type I string theory]] instead.) Accordingly, tadpole cancellation via [[orientifolds|orientifolding]] is a key consistency condition in the construction of [[intersecting D-brane models]] for [[string phenomenology]]. Traditionally RR-tadpole cancellation is discussed in [[ordinary cohomology]], the common arguments notwithstanding that [[D-brane charge]] should be in [[K-theory]]. Discussion of tadpole cancellation with [[D-brane charge]] regarded in [[K-theory]] was initated in \hyperlink{Uranga00}{Uranga 00, Section 5}, see also \hyperlink{GarciaUranga05}{Garcia-Uranga 05}, \hyperlink{Marchesano03}{Marchesano 03, Section 4}, \hyperlink{MarchesanoShiu04}{Marchesano-Shiu 04}, \hyperlink{CKMNW05}{CKMNW 05, Section 2.2}, \hyperlink{MaidenShiuStefanski06}{Maiden-Shiu-Stefanski 06, Section 5}, \hyperlink{DFM09}{DFM 09, p. 6-7}. But the situation remains somewhat inconclusive (see also \hyperlink{Moore14}{Moore 14, p. 21-22}). $\backslash$linebreak \hypertarget{ForFractionalDBranes}{}\subsection*{{In plane and toroidal orientifolds}}\label{ForFractionalDBranes} More details are understood in the special case of plane orbifolds $V^{cpt} \!\sslash\! G$ and [[toroidal orbifold|toroidal orientifolds]] $\mathbb{T}^V \!\sslash\! G$ where [[fractional D-branes]] may be stuck at [[orbifold]]/[[orientifold]] singularities, whose [[D-brane charge]] is supposed to be in the [[equivariant K-theory]] of the point, hence the [[representation ring]] of the given [[isotropy group]]. \hypertarget{InTermsOfEquivariantKTheory}{}\subsubsection*{{In terms of equivariant K-theory / the representation ring}}\label{InTermsOfEquivariantKTheory} In this case tadpole cancellation conditions are given by [[representation theory|representation theoretic]] [[equations]], constraining the [[character of a linear representation|characters]] of the [[linear representations]] corresponding to the [[fractional D-branes]]. Let $G$ be a [[finite group]]. Let \begin{displaymath} [1] \subset [H_1] \subset [H_2] \subset \cdots \subset [G] \end{displaymath} be a [[linear extension of a partial order|linear extension]] of its [[partially ordered set|partially ordered]] [[lattice of subgroups|lattice of]] [[conjugacy classes]] of [[subgroups]], with [[subset|sub-]] [[linear order]] of [[cyclic group|cyclic]] [[subgroups]] \begin{displaymath} [1] \subset \left[ \left\langle g_1 \right\rangle \right] \subset \left[ \left\langle g_2 \right\rangle \right] \subset \cdots \subset \left[ \left\langle g_{\vert ConjCl(G)\vert} \right\rangle \right] \,. \end{displaymath} This way every [[virtual representation]] $[V] \in RU(G) = KU_G(\ast)$ (the [[D-brane charge]] of a [[bound state]] of [[fractional D-branes]]/[[anti-branes]]) has a [[character of a linear representation|character]] which is a list of [[complex numbers]] of the form \begin{tabular}{l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\cdots$&$\left[\langle g_{\vert ConjCl(G)\vert}\rangle\right]$\\ \hline $\chi_V =$&$dim(V)$&$tr_V\left( g_1\right)$&$tr_V\left(g_2\right)$&$\cdots$&$tr_V\left(g_{\vert ConjCl(G)\vert}\right)$\\ ${{\text{fractional} \atop \text{D-brane/anti-brane}} \atop \text{bound state}}$&${ {\text{mass} =} \atop {{\text{net number} \atop \text{of branes}}}}$&${\text{RR-charge in} \atop {g_1\text{-twisted sector}}}$&${\text{RR-charge in} \atop {g_2\text{-twisted sector}}}$&$\cdots$&$\cdots$\\ \end{tabular} Here $dim(V) \in \mathbb{Z}$ is the [[mass]], hence the net number of [[fractional D-branes]]/[[anti-branes]] in the [[bound state]], while $tr_V\left(g_k\right)$ is (up to a global [[rational number]]-factor $1/{\vert G \vert}$) supposed to be its [[charge]] as seen by the [[RR-fields]] in the $g_k$-[[twisted sector]]. In fact, since we are dealing with fractional D-branes, both the charge and mass in the above table are in factional units $1/{\vert G\vert}$ of the [[order of a group|order]] of the [[isotropy group]] $G$ (by \href{fractional+D-brane#eq:RRChargeOfFractionalDBraneInGTwistedSector}{this formula}), so that normalized [[mass]] and [[charge]] is \begin{equation} M \;=\; \tfrac{1}{{\vert G\vert}} dim(V) \,, \phantom{AAA} Q_V(g) \;=\; \tfrac{1}{\vert G\vert} \chi_V(g) \coloneqq \tfrac{1}{\vert G\vert} tr_V\left( g\right) \,. \label{ChargeMass}\end{equation} \hypertarget{TwistedTadpoleCancellation}{}\paragraph*{{Local/twisted tadpole cancellation}}\label{TwistedTadpoleCancellation} The \textbf{twisted (local) tadpole cancellation condition} for [[fractional D-branes]] at orbifold singularities is that the RR-charges in all non-trivially twisted sectors vanish: \begin{equation} Q_V(g) = 0 \phantom{AA}\text{hence equivalently} \phantom{AA} \chi_{V}\left(g\right) \;=\; 0 \,, \phantom{AAA} g \neq e \label{VanishingOfCharacterValuesOnNontrivialSubgroups}\end{equation} \begin{example} \label{UnitRegularRepresentation}\hypertarget{UnitRegularRepresentation}{} \textbf{([[regular representation]] solves tadpole cancellation for [[fractional D-branes]])} For every [[finite group]] $G$, the homogeous tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} is satisfied by all multiples $n \cdot k[G/1]$ of the [[regular representation]] $k[G/1]$ (since no non-trivial element $g \in G$ has [[fixed points]] when acting on $G$, and using \href{table+of+marks#MarkHomomorphismIsCharactersOfPermutationRepresentation}{this Prop.}). Hence the [[mass]] and [[charge]] \eqref{ChargeMass} of the [[fractional D-brane]] corresponding to the [[regular representation]] is \begin{displaymath} M_{{}_{k[G/1]}} \;=\; 1 \,, \phantom{AA} Q_{{}_{k[G/1]}}(g) \;=\; 0 \,. \end{displaymath} These multiples of the [[regular representation]] are regarded as trivial solutions to \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups}. \end{example} \begin{prop} \label{RegularRepSpansSolutionToHomogeneousTadpoleCancellation}\hypertarget{RegularRepSpansSolutionToHomogeneousTadpoleCancellation}{} In fact, the multiples of the [[regular representation]] (Example \ref{UnitRegularRepresentation}) are the \emph{only} solutions to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for [[fractional D-branes]]. \end{prop} \begin{proof} Consider the truncated [[character morphism]] \begin{displaymath} Q \cdot {\vert G \vert} \;\colon\; Rep_k(G) \overset{\chi}{\longrightarrow} k^{\left\vert ConjCl(G) \right\vert} \overset{ \text{forget dimension/mass} }{\longrightarrow} k^{\left\vert ConjCl(G)\right\vert -1 } \,. \end{displaymath} We have to show that the [[kernel]] of this map is the [[free abelian group]] generated by the [[regular representation]]: \begin{displaymath} ker\big( Q \cdot {\vert G \vert} \big) \;\simeq\; \mathbb{Z} \cdot k[G/1] \,. \end{displaymath} Now over a [[ground field]] $k$ of [[characteristic zero]] (such as the [[real numbers]] or [[complex numbers]], in the case at hand) we have (from \href{character+of+a+linear+representation#NormalizedSumOfCharacters}{this Example}) that \begin{enumerate}% \item for $\rho \neq \mathbf{1}$ a non-[[trivial representation|trivial]] [[irreducible representation]] we have \begin{displaymath} \underset{g \in G \setminus \{e\}}{\sum} Q_{\rho}(g) \cdot {\vert G \vert} \;\coloneqq\; \underset{g \in G \setminus \{e\}}{\sum} \chi_\rho(g) \;=\; - dim(\rho) \end{displaymath} \item for $\rho = \mathbf{1}$ the [[trivial representation|trivial]] [[irreducible representation]] we have \begin{displaymath} \underset{g \in G \setminus \{e\}}{\sum} Q_{\rho}(g) \cdot {\vert G \vert} \;\coloneqq\; \underset{g \in G \setminus \{e\}}{\sum} \chi_\rho(g) \;=\; {\left\vert G\right \vert} - 1 \;=\; - dim(\mathbf{1}) \;mod\; {\vert G\vert} \end{displaymath} \end{enumerate} Since every $V \in R_{k}(G)$ is a $\mathbb{Z}$-[[linear combination]] of these [[irreps]], it follows generally that the \emph{fractional part} of the [[mass]] of a [[fractional D-brane]] is recovered from its [[charges]]: \begin{displaymath} dim(V) \;mod\; {\vert G \vert} \;=\; - \underset{g \in G \setminus \{e\}}{\sum} Q_{V}(g) \cdot {\vert G \vert} \;\coloneqq\; - \underset{g \in G \setminus \{e\}}{\sum} \chi_V(g) \,. \end{displaymath} But this means that all $V$ in the [[kernel]] of $Q \cdot {\vert G \vert}$ must have \begin{displaymath} dim(V) \;=\; 0 \;mod\; {\vert G \vert} \,. \end{displaymath} This is indeed the case for the multiples $V = n\cdot k[G/1]$ of the [[regular representation]] (Example \ref{UnitRegularRepresentation}). Conversely, the injectivity of the full [[character morphism]] $\chi$ (\href{character+of+a+linear+representation#InCharZeroCharacterMorphismIsInjective}{this Prop.}) says that every $V$ with $dim(V) = n \cdot {\vert G\vert }$ and $Q_V(g) = 0$ must be the $n$th multiple of the regular representation. \end{proof} \hypertarget{UntwistedTadpoleCancellation}{}\paragraph*{{Global/untwisted tadpole cancellation}}\label{UntwistedTadpoleCancellation} On the other hand, at an [[orientifold]] singularity, the [[O-plane]] itself carries such charge -- [[O-plane charge]] (see \href{orientifold+plane#OPlaneCharge}{there}): \begin{tabular}{l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\cdots$&$\left[\langle g_{\vert ConjCl(G)\vert}\rangle\right]$\\ \hline $\chi_O =$&$dim(O)$&$tr_O\left( g_1\right)$&$tr_O\left(g_2\right)$&$\cdots$&$tr_O\left(g_{\vert ConjCl(G)\vert}\right)$\\ $\text{O-plane}$&&${\text{O-plane charge in} \atop {g_1\text{-twisted sector}}}$&${\text{O-plane-charge in} \atop {g_2\text{-twisted sector}}}$&$\cdots$&$\cdots$\\ \end{tabular} (These are $O^-$-plane charges. There may also be $O^+$-plane charges. Alternatively, these are $O^-$-branes with a fractional D-brane stuck on them.) Now the \textbf{untwisted (global) tadpole cancellation condition} is that (all representations are real and) this [[O-plane charge]] is cancelled against the [[D-brane charge]]: \begin{equation} \chi_{V}\left(g_{k \geq 1}\right) \;=\; 0 \phantom{AA} \text{and} \phantom{AA} dim(V) = dim(O) \,. \label{InhomogeneousTadpoleCancellation}\end{equation} By Prop. \ref{RegularRepSpansSolutionToHomogeneousTadpoleCancellation} the only possible solution of this is the $n$th multiple of the [[regular representation]], if $dim(O)$ is $n$ times the dimension of the [[regular representation]]: \begin{equation} V = N \cdot k[G/1] \,. \label{VIsMultipleOfRegularRepresentation}\end{equation} In basic examples the [[O-plane]]-charge \begin{displaymath} O = 2^{p-4} n \cdot \mathbf{1} \end{displaymath} is for $n_O$ coincident [[O-planes]] is the corresponding multiple by the [[O-plane charge]] $\mu_{Op} = -2^{8-4}$ (\href{orientifold+plane#eq:OpPlaneCharge}{here}) of the [[trivial representation|trivial]] [[irrep]], whence a solution to the tadpole cancellation exists if $\frac{2^{p-4}}{\vert G\vert } \in \mathbb{N} \subset \mathbb{Q}$ and is then given by \begin{displaymath} V \;=\; \frac{2^{p-4}}{\vert G\vert } \cdot k[G/1] \,. \end{displaymath} Sometimes the condition \eqref{VIsMultipleOfRegularRepresentation} is found with an offset by a trivial representation \begin{equation} V = N \cdot k[G/1] + \mathbf{p}_{triv} \,. \label{VIsMultipleOfRegularRepresentation}\end{equation} This corresponds to single fractional D-branes sitting on top of the O-planes, turning $O^-$-planes into $O^+$-planes. \hypertarget{ExamplesForToroidalOrientifolds}{}\subsubsection*{{Examples for toroidal orientifolds}}\label{ExamplesForToroidalOrientifolds} [[!include RR-field tadpole cancellation on toroidal orientifolds -- table]] $\backslash$linebreak \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} See also at \emph{[[equivariant Hopf degree theorem]]}. \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} \hypertarget{ExamplesForFractionalDBranes}{}\subsubsection*{{Examples of non-compact singularities}}\label{ExamplesForFractionalDBranes} We discuss more explicitly the solutions to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for [[fractional D-branes]] at [[orbifold]] [[singularities]] for [[isotropy group]] one of the [[nonabelian group|non-abelian]] [[finite subgroups of SU(2)]], \begin{displaymath} G_{DE} \;\subset\; SU(2) \end{displaymath} hence those in the [[ADE-classification|D- and E-series]], hence the [[binary dihedral groups]] $2 D_{2n}$ and the three exceptional cases: [[2T]], [[2O]] and [[2I]]. For these groups, by \hyperlink{BurtonSatiSchreiber18}{BSS 18, Theorem 4.1} the [[virtual representation|virtual]] [[permutation representations]] span precisely the sub charge lattice of integral (non-irrational) characters/RR-charges in the [[orientifold]] charge lattice of the corresponding [[ADE-singularity]], namely of the [[equivariant KO-theory]]=[[representation ring|real representation ring]] \begin{displaymath} KO^0_{G_{DE}}(\ast) \;=\; RO\left( G_{DE} \right) \,. \end{displaymath} Since the tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} in particular requires the characters/charges to be integral (specifically: zero) the general solution to the tadpole cancellation condition is indeed in this sub-lattice, and so that is where we may and do solve it, below. In accord with the general Prop. \ref{RegularRepSpansSolutionToHomogeneousTadpoleCancellation} we find that in each case there is precisely a 1-dimensional (i.e. $\simeq \mathbb{Z}$) sublattice of the charge lattice (the [[representation ring]]) which solves the twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups}, hence a sublattice given by the [[integer]]-multiples $N \cdot V_0$ of one single [[fractional D-brane]] [[bound state]] $V_0 \in KO^0_G(\ast)$. There are then necessarily two of these generators $\pm V_0$. We check below that in all cases the normalized [[mass]] of these is $\pm$ unity, as it must be for the [[regular representation]], by Prop. \ref{RegularRepSpansSolutionToHomogeneousTadpoleCancellation}. \hypertarget{at_a_orientifold_singularity}{}\paragraph*{{At a $\mathbb{Z}_2$-orientifold singularity}}\label{at_a_orientifold_singularity} For $G = \mathbb{Z}_2$ the [[cyclic group]] of [[order of a group|order]] ${\vert \mathbb{Z}_2\vert} = 2$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (e.g. \href{https://people.maths.bris.ac.uk/~matyd/GroupNames/1/C2.html}{here}) \begin{tabular}{l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$-1$\\ \end{tabular} One sees immediately that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G = \mathbb{Z}_2$ is \begin{displaymath} V \;=\; n \cdot \Big( 1 \cdot V_1 + 1 \cdot V_2 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \,. \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{\mathbb{Z}_2} & = dim(V) / {\vert \mathbb{Z}_2 \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert \mathbb{Z}_2 \vert} \\ & = \big( 1 \cdot 1 + 1 \cdot 1 \big) / {2} & \\ & = 2 / 2 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{at_a_orientifold_singularity_2}{}\paragraph*{{At a $\mathbb{Z}_4$-orientifold singularity}}\label{at_a_orientifold_singularity_2} For $G = \mathbb{Z}_4$ the [[cyclic group of order 4]], the [[character of a linear representation|characters]]/[[D-brane charges]] of the complex [[irreducible representations]]/[[fractional D-branes]] are (e.g. \href{https://people.maths.bris.ac.uk/~matyd/GroupNames/1/C4.html}{here}) \begin{tabular}{l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}1$&$-1$&$-i$&$\phantom{-}i$\\ $\chi_{V_4} =$&$\phantom{-}1$&$-1$&$\phantom{-}i$&$-i$\\ \end{tabular} One sees immediately that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G = \mathbb{Z}_3$ is \begin{displaymath} V \;=\; n \cdot \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 1 \cdot V_4 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \,. \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{\mathbb{Z}_4} & = dim(V) / {\vert \mathbb{Z}_4 \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert \mathbb{Z}_4 \vert} \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \big) / {4} & \\ & = 4 / 4 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2d4Singularity}{}\paragraph*{{At a $2 D_4$-orientifold singularity}}\label{At2d4Singularity} For $G = 2 D_4 = Q_8$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_4\vert}$ (equivalently: the [[quaternion group]]), the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.1}): \begin{tabular}{l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$\\ $\chi_{V_4} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}4$&$-4$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ \end{tabular} One sees (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1%7D,%7B1,%E2%88%921,1,-1%7D,%7B1,-1,-1,1%7D,%7B1,1,-1,-1%7D,%7B-4,0,0,0%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_4$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 1 \cdot V_4 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_4} & = dim(V)/ {\vert 2 D_4\vert} \\ & = \chi_V\left( [\langle e\rangle]\right) / {\vert 2 D_4\vert} & = \big( 1 + 1 + 1 + 1 + 4 \big) / 8 \\ & = 8 / 8 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D6Singularity}{}\paragraph*{{At a $2 D_6$-orientifold singularity}}\label{At2D6Singularity} For $G = 2 D_6$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_6\vert} = 12$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.2}): \begin{tabular}{l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$\\ $\chi_{V_3} =$&$\phantom{-}2$&$\phantom{-}2$&$-1$&$\phantom{-}0$&$\phantom{-}0$&$-1$\\ $\chi_{V_4} =$&$\phantom{-}2$&$-2$&$\phantom{-}2$&$\phantom{-}0$&$\phantom{-}0$&$-2$\\ $\chi_{V_5} =$&$\phantom{-}4$&$-4$&$-2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1%7D,%7B1,1,%E2%88%921,%E2%88%921,1%7D,%7B2,%E2%88%921,0,0,%E2%88%921%7D,%7B%E2%88%922,2,0,0,%E2%88%922%7D,%7B%E2%88%924,%E2%88%922,0,0,2%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_6$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 2 \cdot V_3 + 1 \cdot V_4 + 1 \cdot V_5 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_6} & = dim(V) / {\vert 2 D_6 \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2 D_6\vert} \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2 + 1 \cdot 2 + 1 \cdot 4 \big) / {12} & \\ & = 12 / 12 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D8Singularity}{}\paragraph*{{At a $2 D_8$-orientifold singularity}}\label{At2D8Singularity} For $G = 2 D_8$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_8\vert} = 16$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.3}): \begin{tabular}{l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_4} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}2$&$\phantom{-}2$&$-2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_6} =$&$\phantom{-}8$&$-8$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1%7D,%7B1,1,-1,1,-1,-1%7D,%7B1,1,-1,-1,1,1%7D,%7B1,1,1,-1,-1,-1%7D,%7B2,-2,0,0,0,0%7D,%7B-8,0,0,0,0,0%7D%7D%5D}{here}), that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_8$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 1 \cdot V_4 + 2 \cdot V_5 + 1 \cdot V_6 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_8} & = dim(V) / {\vert 2 D_8\vert} \\ & = \chi_V([\langle e\rangle]) / { \vert 2 D_8\vert } \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2 + 1 \cdot 8 \big) / 16 & \\ & = 16 / 16 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D10Singularity}{}\paragraph*{{At a $2 D_{10}$-orientifold singularity}}\label{At2D10Singularity} For $G = 2 D_{10}$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_{10}\vert} = 20$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.4}): \begin{tabular}{l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_3} =$&$\phantom{-}2$&$-2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$&$\phantom{-}2$&$-2$&$-2$\\ $\chi_{V_4} =$&$\phantom{-}4$&$\phantom{-}4$&$\phantom{-}0$&$\phantom{-}0$&$-1$&$-1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}8$&$-8$&$\phantom{-}0$&$\phantom{-}0$&$-2$&$-2$&$\phantom{-}2$&$\phantom{-}2$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1,1%7D,%7B1,-1,-1,1,1,1,1%7D,%7B-2,0,0,2,2,-2,-2%7D,%7B4,0,0,-1,-1,-1,-1%7D,%7B-8,0,0,-2,-2,2,2%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_{10}$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 2 \cdot V_4 + 1 \cdot V_5 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_{10}} & = dim(V) / {\vert 2 D_{10}\vert} \\ & = \chi_V([\langle e\rangle]) / {\vert 2 D_{10}\vert} \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 2 + 2 \cdot 4 + 1 \cdot 8 \big) / 20 & \\ & = 20 / 20 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D12Singularity}{}\paragraph*{{At a $2 D_{12}$-orientifold singularity}}\label{At2D12Singularity} For $G = 2 D_{12}$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_{12}\vert} = 24$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.5}): \begin{tabular}{l|l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$&$\left[\langle g_8\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_3} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_4} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}2$&$\phantom{-}2$&$-1$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$&$-1$&$-1$&$-1$\\ $\chi_{V_6} =$&$\phantom{-}2$&$\phantom{-}2$&$-1$&$\phantom{-}0$&$\phantom{-}0$&$-2$&$-1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_7} =$&$\phantom{-}4$&$-4$&$\phantom{-}4$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$-4$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_8} =$&$\phantom{-}8$&$-8$&$-4$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}4$&$\phantom{-}0$&$\phantom{-}0$\\ \end{tabular} One sees (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1,1,1%7D,%7B1,1,-1,-1,1,1,1,1%7D,%7B1,1,-1,1,-1,1,-1,-1%7D,%7B1,1,1,-1,-1,1,-1,-1%7D,%7B2,-1,0,0,2,-1,-1,-1%7D,%7B2,-1,0,0,-2,-1,1,1%7D,%7B-4,4,0,0,0,-4,0,0%7D,%7B-8,-4,0,0,0,4,0,0%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_{12}$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 1 \cdot V_4 + 2 \cdot V_5 + 2 \cdot V_6 + 1 \cdot V_7 + 1 \cdot V_8 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_{12}} & = dim(V) / {\vert 2 D_{12}\vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2 D_{12}\vert } \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 + 1 \cdot 4 + 1 \cdot 8 \big) / 24 & \\ & = 24 / 24 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D14Singularity}{}\paragraph*{{At a $2 D_{14}$-orientifold singularity}}\label{At2D14Singularity} For $G = 2 D_{14}$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_{14}\vert} = 28$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.6}): \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$&$\left[\langle g_8\rangle\right]$&$\left[\langle g_9\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_3} =$&$\phantom{-}2$&$-2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$&$\phantom{-}2$&$\phantom{-}2$&$-2$&$-2$&$-2$\\ $\chi_{V_4} =$&$\phantom{-}6$&$\phantom{-}6$&$\phantom{-}0$&$\phantom{-}0$&$-1$&$-1$&$-1$&$-1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-1}\mathllap{12}$&$\phantom{-1}\mathllap{-12}$&$\phantom{-}0$&$\phantom{-}0$&$-2$&$-2$&$-2$&$\phantom{-}2$&$\phantom{-}2$&$\phantom{-}2$\\ \end{tabular} One sees by immediate inspection, that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_{14}$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 2 \cdot V_4 + 1 \cdot V_5 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_{14}} & = dim(V) / {\vert 2 D_{14}\vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2 D_{14}\vert } \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 2 + 2 \cdot 6 + 1 \cdot 12 \big) / 28 \\ & = 28 /28 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2D16Singularity}{}\paragraph*{{At a $2 D_{16}$-orientifold singularity}}\label{At2D16Singularity} For $G = 2 D_{16}$ the [[binary dihedral group]] of [[order of a group|order]] ${\vert 2 D_{16}\vert} = 32$, the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.7}): \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$&$\left[\langle g_8\rangle\right]$&$\left[\langle g_9\rangle\right]$&$\left[\langle g_9\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_4} =$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$-1$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}2$&$\phantom{-}2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$&$-2$&$-2$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_6} =$&$\phantom{-}4$&$\phantom{-}4$&$\phantom{-}0$&$\phantom{-}0$&$-4$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_7} =$&$\phantom{-1}\mathllap{16}$&$\phantom{-1}\mathllap{-16}$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}0$\\ \end{tabular} One sees by immediate inspection, that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G =2 D_{16}$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 1 \cdot V_3 + 1 \cdot V_4 + 2 \cdot V_5 + 2 \cdot V_6 + 1 \cdot V_7 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2 D_{16}} & = dim(V) / {\vert 2 D_{16}\vert} \\ & = \chi_V([\langle e\rangle]) / {\vert 2 D_{16}\vert} \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 4 + 1 \cdot 16 \big) /32 \\ & = 32 / 32 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2TSingularity}{}\paragraph*{{At a $2 T$-orientifold singularity}}\label{At2TSingularity} For $G = 2 T$ the [[binary tetrahedral group]] (whose [[order of a group|order]] is ${\vert 2T \vert} =24$), the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.8}): \begin{tabular}{l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}2$&$\phantom{-}2$&$-1$&$-1$&$\phantom{-}2$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}3$&$\phantom{-}3$&$\phantom{-}0$&$\phantom{-}0$&$-1$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_4} =$&$\phantom{-}4$&$-4$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}0$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}4$&$-4$&$-2$&$-2$&$\phantom{-}0$&$\phantom{-}2$&$\phantom{-}2$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1%7D,%7B2,-1,-1,2,-1,-1%7D,%7B3,0,0,-1,0,0%7D,%7B-4,1,1,0,-1,-1%7D,%7B-4,-2,-2,0,2,2%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G = 2T$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 3 \cdot V_3 + 2 \cdot V_4 + 1 \cdot V_5 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2I} & = dim(V) / {\vert 2 I \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2 I \vert } \\ & = \big( 1 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 + 2 \cdot 4 + 1 \cdot 4 \big) / 24 & \\ & = 24 / 24 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2OSingularity}{}\paragraph*{{At a $2 O$-orientifold singularity}}\label{At2OSingularity} For $G = 2 O$ the [[binary octahedral group]] (whose [[order of a group|order]] is ${\vert 2O \vert} = 48$), the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.9}): \begin{tabular}{l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$-1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}2$&$\phantom{-}2$&$-1$&$\phantom{-}2$&$\phantom{-}0$&$-1$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_4} =$&$\phantom{-}3$&$\phantom{-}3$&$\phantom{-}0$&$-1$&$\phantom{-}1$&$\phantom{-}0$&$-1$&$-1$\\ $\chi_{V_5} =$&$\phantom{-}3$&$\phantom{-}3$&$\phantom{-}0$&$-1$&$-1$&$\phantom{-}0$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_6} =$&$\phantom{-}8$&$-8$&$\phantom{-}2$&$\phantom{-}0$&$\phantom{-}0$&$-2$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_7} =$&$\phantom{-}8$&$-8$&$-4$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}4$&$\phantom{-}0$&$\phantom{-}0$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1,1%7D,%7B1,1,1,-1,1,-1,-1%7D,%7B2,-1,2,0,-1,0,0%7D,%7B3,0,-1,1,0,-1,-1%7D,%7B3,0,-1,-1,0,1,1%7D,%7B-8,2,0,0,-2,0,0%7D,%7B-8,-4,0,0,4,0,0%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G = 2O$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 1 \cdot V_2 + 2 \cdot V_3 + 3 \cdot V_4 + 3 \cdot V_5 + 2 \cdot V_6 + 1 \cdot V_7 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2O} & = dim(V) / {\vert 2 O \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2 O \vert } \\ & = \big( 1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 + 3 \cdot 3 + 2 \cdot 8 + 1 \cdot 8 \big) / 48 & \\ & = 48 / 48 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{At2ISingularity}{}\paragraph*{{At a $2 I$-orientifold singularity}}\label{At2ISingularity} For $G = 2 I$ the [[binary icosahedral group]] (whose [[order of a group|order]] is ${\vert 2I \vert} = 120$), the [[character of a linear representation|characters]]/[[D-brane charges]] of the elementary [[virtual representation|virtual]] [[permutation representations]]/[[fractional D-branes]] are (\hyperlink{BurtonSatiSchreiber18}{BSS 18, 4.10}): \begin{tabular}{l|l|l|l|l|l|l|l|l|l} $[H] =$&$\left[\langle e\rangle\right]$&$\left[\langle g_1\rangle\right]$&$\left[\langle g_2\rangle\right]$&$\left[\langle g_3\rangle\right]$&$\left[\langle g_4\rangle\right]$&$\left[\langle g_5\rangle\right]$&$\left[\langle g_6\rangle\right]$&$\left[\langle g_7\rangle\right]$&$\left[\langle g_8\rangle\right]$\\ \hline $\chi_{V_1} =$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_2} =$&$\phantom{-}4$&$\phantom{-}4$&$\phantom{-}1$&$\phantom{-}0$&$-1$&$-1$&$\phantom{-}1$&$-1$&$-1$\\ $\chi_{V_3} =$&$\phantom{-}5$&$\phantom{-}5$&$-1$&$\phantom{-}1$&$\phantom{-}0$&$\phantom{-}0$&$-1$&$\phantom{-}0$&$\phantom{-}0$\\ $\chi_{V_4} =$&$\phantom{-}6$&$\phantom{-}6$&$\phantom{-}0$&$-2$&$\phantom{-}1$&$\phantom{-}1$&$\phantom{-}0$&$\phantom{-}1$&$\phantom{-}1$\\ $\chi_{V_5} =$&$\phantom{-1}\mathllap{12}$&$\phantom{-1}\mathllap{-12}$&$\phantom{-}0$&$\phantom{-}0$&$\phantom{-}2$&$\phantom{-}2$&$\phantom{-}0$&$-2$&$-2$\\ $\chi_{V_6} =$&$\phantom{-}8$&$-8$&$\phantom{-}2$&$\phantom{-}0$&$-2$&$-2$&$-2$&$\phantom{-}2$&$\phantom{-}2$\\ $\chi_{V_7} =$&$\phantom{-}8$&$-8$&$-4$&$\phantom{-}0$&$-2$&$-2$&$\phantom{-}4$&$\phantom{-}2$&$\phantom{-}2$\\ \end{tabular} One finds (\href{https://www.wolframalpha.com/input/?i=Nullspace+Transpose%5B%7B%7B1,1,1,1,1,1,1,1%7D,%7B4,1,0,-1,-1,1,-1,-1%7D,%7B5,-1,1,0,0,-1,0,0%7D,%7B6,0,-2,1,1,0,1,1%7D,%7B-12,0,0,2,2,0,-2,-2%7D,%7B-8,2,0,-2,-2,-2,2,2%7D,%7B-8,-4,0,-2,-2,4,2,2%7D%7D%5D}{here}) that the general solution to the local/twisted tadpole cancellation condition \eqref{VanishingOfCharacterValuesOnNontrivialSubgroups} for $G = 2I$ is \begin{displaymath} V \;=\; n \Big( 1 \cdot V_1 + 4 \cdot V_2 + 5 \cdot V_3 + 3 \cdot V_4 + 3 \cdot V_5 + 2 \cdot V_6 + 1 \cdot V_7 \Big) \,, \phantom{AAA} n \in \mathbb{Z} \end{displaymath} whose minimal [[positive number|positive]] [[mass]] (net brane number) is \begin{displaymath} \begin{aligned} M_{2I} & = dim(V) / {\vert 2I \vert } \\ & = \chi_V([\langle e\rangle]) / {\vert 2I \vert } \\ & = \big( 1 \cdot 1 + 4 \cdot 4 + 5 \cdot 5 + 3 \cdot 6 + 3 \cdot 12 + 2 \cdot 8 + 1 \cdot 8 \big) / 120 \\ & = 120 / 120 \\ & = 1 \end{aligned} \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[C-field tadpole cancellation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The issue was first highlighted in \begin{itemize}% \item [[Augusto Sagnotti]], \emph{Open strings and their symmetry groups} in G. Mack et. al. (eds.) Cargese ’87, ``Non-perturbative Quantum Field Theory,'' (Pergamon Press, 1988) p. 521 (\href{https://arxiv.org/abs/hep-th/0208020}{arXiv:hep-th/0208020}) \end{itemize} The argument is recalled in \begin{itemize}% \item [[Eric Gimon]], [[Joseph Polchinski]], section 3 of \emph{Consistency Conditions for Orientifolds and D-Manifolds}, Phys.Rev.D54:1667-1676, 1996 (\href{https://arxiv.org/abs/hep-th/9601038}{arXiv:hep-th/9601038}) \end{itemize} Details are in \begin{itemize}% \item [[Edward Witten]], section 9.3 of \emph{Superstring Perturbation Theory Revisited} (\href{https://arxiv.org/abs/1209.5461}{arXiv:1209.5461}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Luis Ibáñez]], [[Angel Uranga]], section 4.4 of \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge 2012 \item [[Ralph Blumenhagen]], [[Dieter Lüst]], [[Stefan Theisen]], section 9.4 of \emph{Basic Concepts of String Theory} Part of the series Theoretical and Mathematical Physics, Springer 2013 \end{itemize} Quick illustrations include: \begin{itemize}% \item Marcus Berg, p. 26-36 in \emph{Introduction to Orientifolds} (\href{https://tp.hotell.kau.se/marcus/physics/talks/orienti_short.pdf}{pdf}, [[BergOrientifolds.pdf:file]]) \item \href{http://www2.kek.jp/theory-center/project/string2higgsflavor/wp-content/uploads/2016/08/part-2.pdf}{slide 18 here} \end{itemize} Critical outlook in \begin{itemize}% \item [[Gregory Moore]] p. 21-22 of \emph{[[Physical Mathematics and the Future]]}, talk at \href{http://physics.princeton.edu/strings2014/}{Strings 2014} (\href{http://physics.princeton.edu/strings2014/slides/Moore.pdf}{talk slides}, \href{http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf}{companion text pdf}, [[MooreVisionTalk2014.pdf:file]]) \end{itemize} The above discussion follows \begin{itemize}% \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) \end{itemize} See also \begin{itemize}% \item G. Aldazabal, D. Badagnani, [[Luis Ibáñez]], [[Angel Uranga]], \emph{Tadpole versus anomaly cancellation in $D=4,6$ compact IIB orientifolds}, JHEP 9906:031, 1999 (\href{https://arxiv.org/abs/hep-th/9904071}{arXiv:hep-th/9904071}) \item [[Angel Uranga]], \emph{D-brane probes, RR tadpole cancellation and K-theory charge}, Nucl.Phys.B598:225-246, 2001 (\href{https://arxiv.org/abs/hep-th/0011048}{arXiv:hep-th/0011048}) \item Maria E. Angulo, David Bailin, Huan-Xiong Yang, \emph{Tadpole and Anomaly Cancellation Conditions in D-brane Orbifold Models}, Int.J.Mod.Phys.A18:3637-3694, 2003 (\href{https://arxiv.org/abs/hep-th/0210150}{arXiv:hep-th/0210150}) \item [[Fernando Marchesano]], section 4 of \emph{Intersecting D-brane Models} (\href{https://arxiv.org/abs/hep-th/0307252}{arXiv:hep-th/0307252}) \item [[Fernando Marchesano]], [[Gary Shiu]], \emph{Building MSSM Flux Vacua}, JHEP0411:041, 2004 (\href{https://arxiv.org/abs/hep-th/0409132}{arXiv:hep-th/0409132}) \item C.-M. Chen, G. V. Kraniotis, V. E. Mayes, D. V. Nanopoulos, J. W. Walker, \emph{A K-theory Anomaly Free Supersymmetric Flipped SU(5) Model from Intersecting Branes}, Phys.Lett. B625 (2005) 96-105 (\href{https://arxiv.org/abs/hep-th/0507232}{arXiv:hep-th/0507232}) \item Inaki Garcia-Etxebarria, [[Angel Uranga]], \emph{From F/M-theory to K-theory and back}, JHEP 0602:008, 2006 (\href{https://arxiv.org/abs/hep-th/0510073}{arXiv:hep-th/0510073}) \item John Maiden, [[Gary Shiu]], [[Bogdan Stefanski]], \emph{D-brane Spectrum and K-theory Constraints of D=4, N=1 Orientifolds}, JHEP0604:052,2006 (\href{https://arxiv.org/abs/hep-th/0602038}{arXiv:hep-th/0602038}) \item Tetsuji Kimura, Mitsuhisa Ohta, Kei-Jiro Takahashi, \emph{Type IIA orientifolds and orbifolds on non-factorizable tori}, Nucl.Phys.B798:89-123, 2008 (\href{https://arxiv.org/abs/0712.2281}{arXiv:0712.2281}) \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]}, Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} In view of consistency of [[flux compactifications]]: \begin{itemize}% \item Philip Betzler, Erik Plauschinn, \emph{Type IIB flux vacua and tadpole cancellation} (\href{https://arxiv.org/abs/1905.08823}{arXiv:1905.08823}) \end{itemize} For the [[topological string]]: \begin{itemize}% \item Johannes Walcher, \emph{Evidence for Tadpole Cancellation in the Topological String} (\href{https://arxiv.org/abs/0712.2775}{arXiv:0712.2775}) \end{itemize} The character tables for [[virtual representation|virtual]] [[permutation representations]] above are taken from \begin{itemize}% \item [[Simon Burton]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The image of the Burnside ring in the Representation ring|The image of the Burnside ring in the Representation ring -- for binary Platonic groups]]} (\href{https://arxiv.org/abs/1812.09679}{arXiv:1812.09679}, \href{https://arxiv.org/src/1812.09679v1/anc}{Python code}) \end{itemize} \hypertarget{examples_and_models}{}\subsubsection*{{Examples and Models}}\label{examples_and_models} Specifically [[K3]] [[orientifolds]] ($\mathbb{T}^4/G_{ADE}$) in [[type IIB string theory]], hence for [[D9-branes]] and [[D5-branes]]: \begin{itemize}% \item [[Eric Gimon]], [[Joseph Polchinski]], Section 3.2 of: \emph{Consistency Conditions for Orientifolds and D-Manifolds}, Phys. Rev. D54: 1667-1676, 1996 (\href{https://arxiv.org/abs/hep-th/9601038}{arXiv:hep-th/9601038}) \item [[Eric Gimon]], [[Clifford Johnson]], \emph{K3 Orientifolds}, Nucl. Phys. B477: 715-745, 1996 (\href{https://arxiv.org/abs/hep-th/9604129}{arXiv:hep-th/9604129}) \item Alex Buchel, [[Gary Shiu]], S.-H. Henry Tye, \emph{Anomaly Cancelations in Orientifolds with Quantized B Flux}, Nucl.Phys. B569 (2000) 329-361 (\href{https://arxiv.org/abs/hep-th/9907203}{arXiv:hep-th/9907203}) \item P. Anastasopoulos, A. B. Hammou, \emph{A Classification of Toroidal Orientifold Models}, Nucl. Phys. B729:49-78, 2005 (\href{https://arxiv.org/abs/hep-th/0503044}{arXiv:hep-th/0503044}) \end{itemize} Specifically [[K3]] [[orientifolds]] ($\mathbb{T}^4/G_{ADE}$) in [[type IIA string theory]], hence for [[D8-branes]] and [[D4-branes]]: \begin{itemize}% \item J. Park, [[Angel Uranga]], \emph{A Note on Superconformal N=2 theories and Orientifolds}, Nucl. Phys. B542:139-156, 1999 (\href{https://arxiv.org/abs/hep-th/9808161}{arXiv:hep-th/9808161}) \item G. Aldazabal, S. Franco, [[Luis Ibanez]], R. Rabadan, [[Angel Uranga]], \emph{D=4 Chiral String Compactifications from Intersecting Branes}, J. Math. Phys. 42:3103-3126, 2001 (\href{https://arxiv.org/abs/hep-th/0011073}{arXiv:hep-th/0011073}) \item G. Aldazabal, S. Franco, [[Luis Ibanez]], R. Rabadan, [[Angel Uranga]], \emph{Intersecting Brane Worlds}, JHEP 0102:047, 2001 (\href{https://arxiv.org/abs/hep-ph/0011132}{arXiv:hep-ph/0011132}) \item H. Kataoka, M. Shimojo, \emph{$SU(3) \times SU(2) \times U(1)$ Chiral Models from Intersecting D4-/D5-branes}, Progress of Theoretical Physics, Volume 107, Issue 6, June 2002, Pages 1291–1296 (\href{https://arxiv.org/abs/hep-th/0112247}{arXiv:hep-th/0112247}, \href{https://doi.org/10.1143/PTP.107.1291}{doi:10.1143/PTP.107.1291}) \end{itemize} \begin{quote}% The $\mathbb{Z}_N$ action with even $N$ contains an order 2 element $[ ...]$ Then there will be D8-branes in the type IIA D4-brane theory. Since the concept of intersecting D-branesinvolves use of the same dimensional D-branes, we restrict ourselves to the case that the order $N$ of $\mathbb{Z}_N$ is odd. (\href{https://arxiv.org/pdf/hep-th/0112247.pdf#page=4}{p. 4}) \end{quote} \begin{itemize}% \item [[Gabriele Honecker]], \emph{Non-supersymmetric Orientifolds with D-branes at Angles}, Fortsch.Phys. 50 (2002) 896-902 (\href{https://arxiv.org/abs/hep-th/0112174}{arXiv:hep-th/0112174}) \item [[Gabriele Honecker]], \emph{Intersecting brane world models from D8-branes on $(T^2 \times T^4/\mathbb{Z}_3)/\Omega\mathcal{R}_1$ type IIA orientifolds}, JHEP 0201 (2002) 025 (\href{https://arxiv.org/abs/hep-th/0201037}{arXiv:hep-th/0201037}) \item [[Gabriele Honecker]], \emph{Non-supersymmetric orientifolds and chiral fermions from intersecting D6- and D8-branes}, thesis 2002 ([[HoneckerIntersectingDBraneModels02.pdf:file]]) \end{itemize} The [[Witten-Sakai-Sugimoto model]] on [[D4-D8-brane bound states]] for [[QCD]] with [[orthogonal group|orthogonal]] [[gauge groups]] on O-planes: \begin{itemize}% \item Toshiya Imoto, [[Tadakatsu Sakai]], [[Shigeki Sugimoto]], \emph{$O(N)$ and $USp(N)$ QCD from String Theory}, Prog.Theor.Phys.122:1433-1453, 2010 (\href{https://arxiv.org/abs/0907.2968}{arXiv:0907.2968}) \item Hee-Cheol Kim, Sung-Soo Kim, Kimyeong Lee, \emph{5-dim Superconformal Index with Enhanced $E_n$ Global Symmetry}, JHEP 1210 (2012) 142 (\href{https://arxiv.org/abs/1206.6781}{arXiv:1206.6781}) \end{itemize} Specifically D5 brane models [[T-duality|T-dual]] to D6/D8 models: \begin{itemize}% \item [[Angel Uranga]], \emph{A New Orientifold of $\mathbb{C}^2/\mathbb{Z}_N$ and Six-dimensional RG Fixed Points}, Nucl. Phys. B577:73-87, 2000 (\href{https://arxiv.org/abs/hep-th/9910155}{arXiv:hep-th/9910155}) \item Bo Feng, [[Yang-Hui He]], [[Andreas Karch]], [[Angel Uranga]], \emph{Orientifold dual for stuck NS5 branes}, JHEP 0106:065, 2001 (\href{https://arxiv.org/abs/hep-th/0103177}{arXiv:hep-th/0103177}) \end{itemize} Specifically for [[D6-branes]]: \begin{itemize}% \item S. Ishihara, H. Kataoka, Hikaru Sato, \emph{$D=4$, $N=1$, Type IIA Orientifolds}, Phys. Rev. D60 (1999) 126005 (\href{https://arxiv.org/abs/hep-th/9908017}{arXiv:hep-th/9908017}) \item [[Mirjam Cvetic]], Paul Langacker, Tianjun Li, Tao Liu, \emph{D6-brane Splitting on Type IIA Orientifolds}, Nucl. Phys. B709:241-266, 2005 (\href{https://arxiv.org/abs/hep-th/0407178}{arXiv:hep-th/0407178}) \end{itemize} Specifically for [[D3-branes]]/[[D7-branes]]: \begin{itemize}% \item \hyperlink{FengHeKarchUranga01}{Feng-He-Karch-Uranga 01} \end{itemize} Various: \begin{itemize}% \item [[Dieter Lüst]], S. Reffert, E. Scheidegger, S. Stieberger, \emph{Resolved Toroidal Orbifolds and their Orientifolds}, Adv.Theor.Math.Phys.12:67-183, 2008 (\href{https://arxiv.org/abs/hep-th/0609014}{arXiv:hep-th/0609014}) \end{itemize} [[!redirects RR-field tadpole cancellations]] [[!redirects RR-tadpole cancellation]] [[!redirects RR-tadpole cancellations]] [[!redirects RR-field tadpole]] [[!redirects RR-field tadpoles]] [[!redirects RR-tadpole]] [[!redirects RR-tadpoles]] [[!redirects RR-field tadpole anomaly]] \end{document}