\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Radon–Nikodym derivative} \hypertarget{radonnikodym_derivatives}{}\section*{{Radon--Nikodym derivatives}}\label{radonnikodym_derivatives} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{notation}{Notation}\dotfill \pageref*{notation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given two [[measures]] $\mu, \nu$ on the same [[measurable space]], their Radon--Nikodym derivative is essentially their ratio $\mu/\nu$, although this is traditionally written $\mathrm{d}\mu/\mathrm{d}\nu$ because of analogies with [[differentiation]]. This ratio or derivative is a [[measurable function]] which is defined up to [[almost equality|equality almost everywhere]] with respect to the divisor $\nu$. It only exists iff $\mu$ is [[absolutely continuous measure|absolutely continuous]] with respect to $\nu$. Integration on a general [[measure space]] can be seen as the process of multiplying a measure by a function to get a measure. Then the Radon--Nikodym derivative is the reverse of this: dividing two measures to get a function. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $X$ be a [[measurable space]] (so $X$ consists of a [[set]] ${|X|}$ and a $\sigma$-[[sigma-algebra|algebra]] $\mathcal{M}_X$), and let $\mu$ and $\nu$ be [[measures]] on $X$, valued in the [[real numbers]] (and possibly taking infinite values) or in the [[complex numbers]] (and taking only finite values). Let $f$ be a [[measurable function]] $f$ (with real or complex values) on $X$. \begin{udefn} The function $f$ is a \textbf{Radon--Nikodym derivative} of $\mu$ with respect to $\nu$ if, given any [[measurable subset]] $A$ of $X$, the $\mu$-measure of $A$ equals the integral of $f$ on $A$ with respect to $\nu$: \begin{displaymath} \mu(A) = \int_A f \nu = \int_{x \in A} f(x) \mathrm{d}\nu(x) . \end{displaymath} (The latter two expressions in this equation are different notations for the same thing.) \end{udefn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} These properties are basic to the concept; the notation is as in the definition above. \begin{theorem} \label{}\hypertarget{}{} Let $f$ be a Radon--Nikodym derivative of $\mu$ with respect to $\nu$, and let $g$ be a measurable function on $X$. Then $g$ is a Radon--Nikodym derivative of $\mu$ with respect to $\nu$ if and only if $f$ and $g$ are equal almost everywhere with respect to $\nu$. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} If a Radon--Nikodym derivative of $\mu$ with respect to $\nu$ exists, then $\mu$ is [[absolutely continuous measure|absolutely continuous]] with respect to $\nu$. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} If $\mu$ is [[absolutely continuous measure|absolutely continuous]] with respect to $\nu$ and both $\mu$ and $\nu$ are $\sigma$-[[sigma-finite measure|finite]], then a Radon--Nikodym derivative of $\mu$ with respect to $\nu$ exists. \end{theorem} \begin{proof} For fairly elementary proofs, see \hyperlink{Bartels2003}{Bartels (2003)}. \end{proof} (This last theorem is not as general as it could be.) Note the repetition of `with respect to $\nu$' in various guises; let us fix $\nu$ (assumed to be $\sigma$-finite) and take everything with respect to it. Then it is convenient to treat all measurable functions up to [[almost equality|equality almost everywhere]]; and given any absolutely continuous $\mu$ (also assumed to be $\sigma$-finite), we speak of [[the]] Radon--Nikodym derivative of $\mu$. \hypertarget{notation}{}\subsection*{{Notation}}\label{notation} See also the discussion of notation at [[measure space]]. Using the simplest notation for integrals, the definition of Radon--Nikodym derivative reads \begin{displaymath} \mu(A) = \int_A f \nu , \end{displaymath} or equivalently \begin{displaymath} \int_A \mu = \int_A f \nu . \end{displaymath} In other words, the measure $\mu$ is the product of the function $f$ and the measure $\nu$: \begin{displaymath} \mu = f \nu ; \end{displaymath} and so $f$ is the ratio of $\mu$ to $\nu$: \begin{displaymath} f = \mu/\nu . \end{displaymath} So this is the simplest notation for the Radon--Nikodym derivative. However, this notation for integrals is uncommon; one is more likely to see \begin{displaymath} \int_A \mathrm{d}\mu = \int_A f \,\mathrm{d}\nu , \end{displaymath} which leads to \begin{displaymath} f = \mathrm{d}\mu/\mathrm{d}\nu \end{displaymath} for the Radon--Nikodym derivative. But none of these `$\mathrm{d}$'s are really necessary. We can also use a fuller notation with a dummy variable as the object of the symbol `$\mathrm{d}$': \begin{displaymath} \int_{x \in A} \mu(\mathrm{d}x) = \int_{x \in A} f(x) \,\nu(\mathrm{d}x) ; \end{displaymath} this leads to \begin{displaymath} f(x) = \mu(\mathrm{d}x)/\nu(\mathrm{d}x) , \end{displaymath} which does not give a symbol for $f$ directly. If instead of $\mu(\mathrm{d}x)$ one unwisely writes $\mathrm{d}\mu(x)$, then this gives the previous notation for the Radon--Nikodym derivative. Now let $\nu$ be [[Lebesgue measure]] on the [[real line]] and let $F$ be an upper [[semicontinuous function]] on the real line, so that $F$ defines a [[Borel measure]] $\mu$ generated by \begin{displaymath} \mu({]-\infty,a]}) \coloneqq F(a) . \end{displaymath} Then $F$ is [[absolutely continuous function|absolutely continuous]] if and only if $\mu$ is absolutely continuous, in which case the [[derivative]] $F'$ exists almost everywhere and is a Radon--Nikodym derivative of $\mu$. That is, \begin{displaymath} \mu/\nu = F' = \mathrm{d}F/\mathrm{d}t . \end{displaymath} The presence of `$\mathrm{d}$' on the right-hand side inspires people to put it on the left-hand side as well; but this is spurious, since we really want to write \begin{displaymath} \mu = \mathrm{d}F \end{displaymath} and \begin{displaymath} \nu = \mathrm{d}t , \end{displaymath} where $t$ is the [[identity function]] on the real line. \hypertarget{references}{}\subsection*{{References}}\label{references} Some fairly elementary proofs prepared for a substitute lecture in [[John Baez]]'s introductory measure theory course are here: \begin{itemize}% \item [[Toby Bartels]] (2003): \emph{The Radon Nikodym Theorem}; \href{http://tobybartels.name/notes/#Radon}{web}. \end{itemize} The strategy there is based on: \begin{itemize}% \item Richard Bradley (1989): An Elementary Treatment of the Radon-Nikodym Derivative, American Mathematical Monthly 96(5), 437--440. \end{itemize} [[!redirects Radon-Nikodym derivative]] [[!redirects Radon-Nikodym derivatives]] [[!redirects Radon–Nikodym derivative]] [[!redirects Radon–Nikodym derivatives]] [[!redirects Radon--Nikodym derivative]] [[!redirects Radon--Nikodym derivatives]] [[!redirects Radon-Nikodym ratio]] [[!redirects Radon-Nikodym ratios]] [[!redirects Radon–Nikodym ratio]] [[!redirects Radon–Nikodym ratios]] [[!redirects Radon--Nikodym ratio]] [[!redirects Radon--Nikodym ratios]] [[!redirects Radon-Nikodym theorem]] [[!redirects Radon-Nikodym theorems]] [[!redirects Radon–Nikodym theorem]] [[!redirects Radon–Nikodym theorems]] [[!redirects Radon--Nikodym theorem]] [[!redirects Radon--Nikodym theorems]] [[!redirects Radon-Nikodym Theorem]] [[!redirects Radon-Nikodym Theorems]] [[!redirects Radon–Nikodym Theorem]] [[!redirects Radon–Nikodym Theorems]] [[!redirects Radon--Nikodym Theorem]] [[!redirects Radon--Nikodym Theorems]] \end{document}