\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Radon monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{spaces_of_radon_measures}{Spaces of Radon measures}\dotfill \pageref*{spaces_of_radon_measures} \linebreak \noindent\hyperlink{in_terms_of_additive_measures}{In terms of τ-additive measures}\dotfill \pageref*{in_terms_of_additive_measures} \linebreak \noindent\hyperlink{in_terms_of_valuations}{In terms of valuations}\dotfill \pageref*{in_terms_of_valuations} \linebreak \noindent\hyperlink{functoriality_unit_and_multiplication}{Functoriality, unit and multiplication}\dotfill \pageref*{functoriality_unit_and_multiplication} \linebreak \noindent\hyperlink{algebras}{Algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{the_ordered_case}{The ordered case}\dotfill \pageref*{the_ordered_case} \linebreak \noindent\hyperlink{construction_of_the_spaces}{Construction of the spaces}\dotfill \pageref*{construction_of_the_spaces} \linebreak \noindent\hyperlink{algebras_2}{Algebras}\dotfill \pageref*{algebras_2} \linebreak \noindent\hyperlink{lax_morphisms_are_concave_maps}{Lax morphisms are concave maps}\dotfill \pageref*{lax_morphisms_are_concave_maps} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Radon monad is a [[measure monad]] on the [[category]] of [[compact Hausdorff spaces]]. Its functor assigns to each space $X$ the space of [[Radon measure|Radon]] [[probability measure|probability]] or subprobability [[measures]], equipped with the [[weak topology]]. There is also an [[order theory|ordered]] version of the Radon monad on the category of [[compact ordered spaces]] (see \hyperlink{the_ordered_case}{below}). \hypertarget{spaces_of_radon_measures}{}\subsection*{{Spaces of Radon measures}}\label{spaces_of_radon_measures} Let $X$ be a [[compact Hausdorff space]]. Denote by $R X$ the set of those [[Radon measures]] on $X$ which are \emph{subnormalized}, i.e. those measures $\mu$ for which $\mu(X)\le 1$. Denote by $P X$ its subset of Radon [[probability measures]]. Equip both sets with the [[weak topology|topology of weak convergence]] with respect to [[continuous functions]]. It is well known that the resulting spaces $R X$ and $P X$ are themselves [[compact Hausdorff spaces]]. \hypertarget{in_terms_of_additive_measures}{}\subsubsection*{{In terms of τ-additive measures}}\label{in_terms_of_additive_measures} Since [[tau-additive measure\#relationship\_with\_other\_measuretheoretical\_notions|on compact Hausdorff spaces Radon and τ-additive measures coincide]], we can equivalently define $R X$ and $P X$ as the sets of subnormalized and normalized [[τ-additive measures]]. For probability measures, the [[weak topology]] and the [[extended probabilistic powerdomain\#the\_measure\_monad\_on\_top|A-topology]] coincide, so that $P$ an be extended to the [[extended probabilistic powerdomain\#the\_probability\_monad\_on\_top|probability monad on Top]]. The same cannot be said for $R$, since the weak topology and the A-topology do not coincide for \emph{subnormalized} measures: given $\mu\in R X$, the measure $r \mu$ for $0 \le r \le 1$ is in the [[closure]] of $\mu$ for the $A$-topology, while the weak topology is [[Hausdorff]]. \hypertarget{in_terms_of_valuations}{}\subsubsection*{{In terms of valuations}}\label{in_terms_of_valuations} Note that, since every [[continuous valuation]] on a [[compact Hausdorff space]] can be [[continuous valuation\#extending\_valuations\_to\_measures|extended to a τ-additive measure]], we could equivalently defined the Radon monad as a monad of [[continuous valuations]]. Just as above, for probability measures, the [[weak topology]] and the [[extended probabilistic powerdomain\#spaces\_of\_valuations|pointwise topology of valuations]] coincide, so that $P$ an be extended to a submonad of the [[extended probabilistic powerdomain]] on [[Top]]. Again, the same cannot be said for $R$. \hypertarget{functoriality_unit_and_multiplication}{}\subsection*{{Functoriality, unit and multiplication}}\label{functoriality_unit_and_multiplication} Let $f:X\to Y$ be a [[continuous map]] between [[compact Hausdorff spaces]]. The [[pushforward of measures]] (or equivalently of [[continuous valuation\#pushforward|valuations]]) gives a well-defined, continuous map $R X\to R Y$ which restricts to the map $P X \to P Y$. This makes $R$ and $P$ [[endofunctors]] of [[Top]]. As it is usual for [[measure monads]], the unit is given by the [[Dirac measures]] and the multiplication is given by [[integration]]. More in detail, given a [[compact Hausdorff space]] $X$, we can assign to each $x\in X$ its [[Dirac measure]] (equivalently, [[continuous valuation\#dirac\_valuations|Dirac valuation]] $\delta_x$. The assignment $\delta:X\to P X$, or $X\to R X$ is continuous, and [[natural transformation|natural]] in $X$. Just as well, given a measure $\mu\in P P X$, we can define the measure $E\mu\in P X$ as the one assigning to a measurable $A\subseteq X$ the number \begin{displaymath} E\mu(A) \coloneqq \int_{P X} p(A) \,d\mu(p). \end{displaymath} (In terms of valuations, the same is given for [[open sets]] instead of [[measurable sets]].) Again, the assignment $E: P P X \to P X$ is continuous and [[natural transformation|natural]] in $X$. The multiplication for $R$ is defined analogously. The unit and multiplication thus defined satisfy the usual [[axioms]] of a [[monad]]. The monads $R$ and $P$ are both known in the literature as the \textbf{Radon monad}. The monad $P$ is the restriction to [[compact Hausdorff spaces]] of the [[extended probabilistic powerdomain\#the\_probability\_monad\_on\_top|probability monad on Top]], which is itself a submonad of the [[extended probabilistic powerdomain]]. (See also [[monads of probability, measures, and valuations]].) \hypertarget{algebras}{}\subsection*{{Algebras}}\label{algebras} The [[algebra over a monad|algebras]] of the Radon monad $P$ are [[compact]] [[convex subsets]] of [[locally convex topological vector spaces]]. More in detail, a compact convex subset $C$ of a locally convex topological vector space is a [[compact Hausdorff space]], and it admits a canonical $P$-algebra structure $e:P C\to C$ via (vector-valued) [[integration]]: \begin{displaymath} p \mapsto \int_{C} c \,dp(c) . \end{displaymath} Since the space is [[compact]], the integral above is well-defined, and it returns an element of $C$ which we can view as the ``center of mass'' of $p$. Conversely, it can be proven that every $P$-algebra is of this form. The [[Eilenberg-Moore category|morphisms of algebras]] are the continuous maps between algebras which commute with the operation of taking integrals. It can be shown that these coincide with the \emph{affine} maps, i.e. those maps $f:A\to B$ which satisfy \begin{displaymath} f\big( \lambda\, a + \mu\, b \big) \;=\; \lambda\,f(a) + \mu\,f(b) \end{displaymath} for all $a,b\in A$ and $0\le\lambda,\mu\le 1$ (with $\lambda+\mu=1$ for the normalized case). For more information, see \hyperlink{swirszcz}{Swirszcz `74} and the later \hyperlink{radonkeimel}{Keimel `08}. \hypertarget{the_ordered_case}{}\subsection*{{The ordered case}}\label{the_ordered_case} The Radon monad can be lifted to the [[CompOrd\#categories\_of\_compact\_ordered\_spaces|category of compact ordered spaces]] (and [[continuous map|continuous]] [[monotone maps]]). This is done by means of the [[stochastic order]]. Here we sketch the construction. For more details, see \hyperlink{radonkeimel}{Keimel `08}. \hypertarget{construction_of_the_spaces}{}\subsubsection*{{Construction of the spaces}}\label{construction_of_the_spaces} Given a [[compact ordered space]] $X$, we can form the spaces $R X$ and $P X$ as for the unordered case, and then equip them with the [[stochastic order]]. Over compact ordered spaces, the stochastic order is antisymmetric (i.e. it is a partial order), and it has [[closed graph]], so that $R X$ and $P X$ are again compact ordered spaces. Given a monotone map $f:X\to Y$, the maps $R f$ and $P f$ are monotone for the stochastic order, and so are the monad structure maps. This way, $P$ and $R$ lift to a monad on [[CompOrd\#categories\_of\_compact\_ordered\_spaces|CompOrd]]. For the canonical [[locally posetal 2-category]] structure of [[CompOrd\#categories\_of\_compact\_ordered\_spaces|CompOrd]] given by the [[pointwise order]], $P$ and $R$ are even [[2-monads]], since whenever $f\le g:X\to Y$, we have $R f\le R g$ $P f\le P g$. Both the resulting monads are known in the literature as \textbf{ordered Radon monad}. \hypertarget{algebras_2}{}\subsubsection*{{Algebras}}\label{algebras_2} The algebras of the ordered Radon monad $P$ are known to be [[compact]] [[convex space|convex]] subsets of [[locally convex topological vector space|locally convex]] [[ordered topological vector spaces]]. This can be seen as the ordered equivalent of the characterization \hyperlink{algebras}{above}. The algebras of $R$, similarly, can be seen as the ordered equivalent of [[Kegelspitze]]. See \hyperlink{radonkeimel}{Keimel `08} for more. Just as for the unordered case, the [[Eilenberg-Moore category|algebra morphisms]] are the continuous affine maps, which here are also required to be monotone. \hypertarget{lax_morphisms_are_concave_maps}{}\subsubsection*{{Lax morphisms are concave maps}}\label{lax_morphisms_are_concave_maps} Differently from the unordered case, in the ordered setting we have a [[2-category]], and so it makes sense to talk about [[lax morphisms]] of algebras. By definition, these amount to maps between algebras $f:A\to B$ with the [[stuff, structure, property|property]] that \begin{displaymath} f \left( \int a \, dp(a) \right) \;\le\; \int f(a) \, dp(a) \end{displaymath} for all $p\in P A$ (resp. $R A$). By the generalized [[Jensen's inequality]], these are precisely the (continuous, monotone) [[concave maps]], i.e. the maps that satisfy \begin{displaymath} f\big( \lambda\, a + \mu\, b \big) \;\le\; \lambda\,f(a) + \mu\,f(b) . \end{displaymath} (Compare with the strict case by replacing the order with equalities.) Just as well, the oplax morphisms are the (continuous, monotone) [[convex maps]]. (For more information see the analogous discussion for the [[Kantorovich monad]] in \hyperlink{orderedkantorovich}{F-P `18}.) \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[monads of probability, measures, and valuations]] \item [[Giry monad]], [[extended probabilistic powerdomain]], [[Kantorovich monad]] \item [[locally convex topological vector space]], [[ordered vector space]], [[convex space]] \item [[compact Hausdorff space]], [[compact ordered space]], [[stably compact space]] \item [[Borel measure]], [[Radon measure]], [[τ-additive measure]], [[continuous valuation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item T. Swirszcz, \emph{Monadic functors and convexity}, Bulletin de l'Academie Polonais des Sciences 22, 1974 (\href{https://www.fuw.edu.pl/~kostecki/scans/swirszcz1974.pdf}{pdf}) \item [[Klaus Keimel]], \emph{The monad of probability measures over compact ordered spaces and its Eilenberg-Moore algebras}, Topology and its Applications, 2008 (\href{https://doi.org/10.1016/j.topol.2008.07.002}{doi:10.1016/j.topol.2008.07.002}) \item [[Tobias Fritz]] and Paolo Perrone, \emph{Stochastic order on metric spaces and the ordered Kantorovich monad}, submitted, 2018. (\href{https://arxiv.org/abs/1808.09898}{arXiv:1808.09898}) \end{itemize} [[!redirects ordered Radon monad]] [[!redirects radon monad]] [[!redirects ordered radon monad]] \end{document}