\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Reconstruction of Groups} [[!redirects Reconstruction of groups]] This entry is to try understanding the article \begin{itemize}% \item [[A. L. Rosenberg]], \emph{Reconstruction of groups}, Selecta Math. N.S. 9:1 (2003) \href{http://dx.doi.org/10.1007/s00029-003-0322-x}{doi} \end{itemize} aimed at a reasonably general reconstruction theorem for [[locally compact topological groups]] from a suitable category of continuous infinite-dimensional representations, generalizing the [[Pontrjagin duality]] theorem for locally compact abelian groups and the [[Tannaka-Krein theorem]] for compact groups. More precisely, it asks \begin{quote}% what are conditions on a monoidal subcategory of the category of continuous representations of a locally compact group sufficient to reconstruct the group? \end{quote} The first generalization of that type is the Tatsuuma reconstruction theorem \begin{itemize}% \item N. Tatsuuma, \emph{A duality theorem for locally compact groups}, J. Math., Kyoto Univ. 6 (1967), 187--293. \end{itemize} which asserts that for a monoidal subcategory $C$ of the category of [[unitary representation]]s of a locally compact group $G$ to be sufficient for the reconstruction from the [[fiber functor]] $C\to Hilb$, it suffices that $C$ contains the regular representation of $G$ on $L^2(G,\mu)$ where $\mu$ is the left Haar measure on $G$. Table of contents $1.$ $\ast$-categories, $\ast$-functors Here monoidal categories, monoidal functors and their morphisms are reviewed and (antilinear) $\ast$-involutions on $\mathbb{C}$-linear monoidal categories. (Small) monoidal $\ast$-categories form a category $Cat^\ast$. For any (monoidal) $\ast$-category, and any group $G$, the category $Rep^G(C)$ of representation of $G$ in objects in $C$ has a structure of a (monoidal) $\ast$-category $Rep^G(C)^{\tilde\ast}$ and the forgetful functor $Rep^G(C)\to C$ is a strict monoidal functor of $\ast$-categories. $2.$ Duality construction $2.1$ The case of abstract groups Here a basic pair of adjoint functors is defined $\mathcal{R}_{C\tilde{}^\ast}\dashv Aut(C\tilde{}^\ast)$ where $Aut(C\tilde{}^\ast): Cat^\ast/C\tilde{}^\ast\to Group$ gives the group of automorphisms of a monoidal $\ast$-functor with codomain $C\tilde{}^\ast$ and its left adjoint is $\mathcal{R}_{C\tilde{}^\ast} : G\mapsto Rep^G(C)\tilde{}^\ast$. $2.2$ The case of topological groups Here one supposes that $C$ is enriched over the category of topological (complex) vector spaces, so that $Aut(V)$ is a topological group for all $V\in Ob C$. The construction of an adjoint pair of functors above works with the category $Group$ replaced by $TopGroup$. However, in the representation theory one assumes only that the representations are continuous in the [[weak operator topology]]; and the group of invertibles in $End V$ in the enriched sense is not always a topological group in that topology. Instead one works with the category of groups with a topology in which only left and right translations are required to be continuous. $2.3$ Reflexivity Reflexive monoidal categories are defined: they have an involution $\sigma$ and functorial isomorphisms $\sigma(X)\otimes X\to Id$ for all objects $X$. For example, rigid symmetric monodial categories and rigid braided monoidal categories are in that class; the category of Hilbert spaces and if a category is reflexive than the category of representations of a group is reflexive. $2.4$ The reconstruction problem From now on a full subcategory $C\tilde{}$ of the category of reflexive locally convex topological complex vector spaces is fixed with a real structure; it is equipped with a monoidal product such that the forgetful functor to vector spaces is monoidal with help of maps $F(V)\otimes_{\mathbb{C}} F(W)\to F(V\otimes W)$ which are injective and with dense image in weak topology on the tensor product. Given a topological group $G$, one chooses a full (monodial) $\ast$-subcategory $\mathfrak{C}\tilde{}$ of the $\ast$-category of continuous uniformly bounded representations of $G$ in $C\tilde{}$. The group of automorphisms of the forgetful functor $F_{\mathfrak{C}} : \mathfrak{C}{\tilde{}}\to Vec$ is equipped with weak operator topology and the canonical morphism $G\to Aut^\ast(F_{\mathfrak{C}})$ is continuous; however $Aut^\ast(F_{\mathfrak{C}})$ is not a topological group in general. The reconstruction problem is, under which conditions on $\mathfrak{C}{\tilde{}}$, the canonical isomorphism is an isomorphism of topological groups. $3.$ The algebra of matrix elements One considers the set $A(\mathfrak{C}\tilde{})$ of matrix elements of representations belonging to the subcategory $A(\mathfrak{C}\tilde{})$. It appears to be a subalgebra of the Banach $\ast$-algebra of complex valued continuous functions on $G$, and is closed with respect to involution $\sigma: f\to f\circ (-)^{-1}$, $f^\sigma(x) = f(x^{-1})$, closed under complex conjugation (which is an anti-involution) and an $M(G)$-submodule. It is proved that each elements of $Aut^\ast(F_{\mathfrak{C}\tilde{}})$ determine an automorphism of the algebra with involution $A(\mathfrak{C})$. subset of the algebra of bounded $4.$ Conditions of continuity Here certain lemmas on certain category $B\mathfrak{A}$ of algebras with involutions and anti-involutions is proved. $5.$ Reconstruction theorems Among several theorems, the theorem 5.3 states that if $G$ is locally compact then a subcategory $\mathfrak{C}\tilde{}$ then for a $\ast$-category of uniformly bounded continuous representations the canonical map $G\to Aut^\ast(F_{\mathfrak{C}\tilde{}})$ to be an isomorphism of topological groups it is sufficient that the following simultaneously hold: \begin{itemize}% \item it separates the elements of $G$ \item the algebra $A(\mathfrak{C})$ of matrix elements has nonzero intersection with $L^p(G,\mu)$ for some $p\gt 0$, where $\mu$ is a left-invariant measure on $G$ \end{itemize} Classical corollaries are also shown. For example, for Tannaka-Krein one notes that all matrix elements of a compact group are in $L^1(G,\mu)$, hence only the separation property is needed. For Tatsuuma duality one notes that the matrix elements of the regular representation are convolutions of functions from $L^2(G,\mu)$ and uses stronger theorem 5.1 from the paper. Pontrjagin duality is a known corollary of Tatsuuma's duality theorem. \end{document}