\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Reedy category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_simplex_category}{The simplex category}\dotfill \pageref*{the_simplex_category} \linebreak \noindent\hyperlink{related_notions}{Related notions}\dotfill \pageref*{related_notions} \linebreak \noindent\hyperlink{direct_and_inverse_categories}{Direct and inverse categories}\dotfill \pageref*{direct_and_inverse_categories} \linebreak \noindent\hyperlink{generalized_reedy_categories}{Generalized Reedy categories}\dotfill \pageref*{generalized_reedy_categories} \linebreak \noindent\hyperlink{elegant_reedy_categories}{Elegant Reedy categories}\dotfill \pageref*{elegant_reedy_categories} \linebreak \noindent\hyperlink{enriched_reedy_categories}{Enriched Reedy categories}\dotfill \pageref*{enriched_reedy_categories} \linebreak \noindent\hyperlink{reedy_categories_with_fibrant_constants}{Reedy categories with fibrant constants.}\dotfill \pageref*{reedy_categories_with_fibrant_constants} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Reedy category} is a [[category]] $R$ equipped with a structure enabling the inductive construction of [[diagrams]] and [[natural transformations]] of shape $R$. It is named after [[Christopher Reedy]]. The most important consequence of a Reedy structure on $R$ is the existence of a certain [[model category|model structure]] on the [[functor category]] $M^R$ whenever $M$ is a [[model category]] (no extra hypotheses on $M$ are required): the \emph{[[Reedy model structure]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{Reedy category} is a [[category]] $R$ equipped with two [[wide subcategory|lluf subcategories]] $R_+$ and $R_-$ and a [[function]] $d:ob(R) \to \alpha$ called \emph{degree}, where $\alpha$ is an [[ordinal number]], such that: \begin{itemize}% \item Every nonidentity morphism in $R_+$ raises degree, \item Every nonidentity morphism in $R_-$ lowers degree, and \item Every morphism $f$ in $R$ factors uniquely as a map in $R_-$ followed by a map in $R_+$. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any ordinal $\alpha$, considered as a [[poset]] and hence a category, is a Reedy category with $\alpha_+=\alpha$, $\alpha_-$ the [[discrete category]] on $ob(\alpha)$, and $d$ the identity. \item The [[opposite category|opposite]] of any Reedy category is a Reedy category; simply exchange $R_+$ and $R_-$. \item [[Theta category|Joyal's category]], $\Theta$, is also a Reedy category. \item Many very small categories of diagram shapes are Reedy categories, such as $(\cdot\to\cdot\to \dots)$, or $(\cdot\leftarrow \cdot\rightarrow\cdot)$, or $(\cdot\rightrightarrows\cdot)$. This is of importance for the construction of [[homotopy limits]] and colimits over such diagram shapes. \end{itemize} \hypertarget{the_simplex_category}{}\subsubsection*{{The simplex category}}\label{the_simplex_category} The prototypical examples of Reedy categories are the [[simplex category]] $\Delta$ and its opposite $\Delta^{op}$. More generally, for any [[simplicial set]] $X$, its [[category of simplices]] $\Delta/X$ is a Reedy category. The Reedy category structure on $\Delta$ is a follows \begin{itemize}% \item a map $[k] \to [n]$ is in $\Delta_+$ precisely if it is injective; \item a map $[n] \to [k]$ is in $\Delta_-$ precisely if it is surjective. \end{itemize} (\ldots{}) \hypertarget{related_notions}{}\subsection*{{Related notions}}\label{related_notions} \hypertarget{direct_and_inverse_categories}{}\subsubsection*{{Direct and inverse categories}}\label{direct_and_inverse_categories} A Reedy category in which $R_-$ contains only identities is called a [[direct category]]; the factorization axiom then says simply that $R=R_+$. Similarly, if $R_+$ contains only identities it is said to be an [[inverse category]]. Any ordinal is of course a direct category, and so is the subcategory $R_+$ of any Reedy category considered as a category in its own right. This amounts to ``discarding the degeneracies'' in a shape category. In some examples there are no degeneracies to begin with, such as the category of [[opetopes]]; thus these are naturally direct categories. \hypertarget{generalized_reedy_categories}{}\subsubsection*{{Generalized Reedy categories}}\label{generalized_reedy_categories} One problem with the notion of Reedy category is that it is [[evil]]: it is not invariant under [[equivalence of categories]]. It's not hard to see that any Reedy category is necessarily [[skeletal category|skeletal]]. In fact, it's even worse: no Reedy category can have \emph{any} [[identity|nonidentity]] [[isomorphisms]]! This is problematic for many $\Delta$-like categories such as the [[category of cycles]], Segal's category $\Gamma$, the [[tree category]] $\Omega$, and so on. The concept of \begin{itemize}% \item [[generalized Reedy category]], \end{itemize} due to [[Clemens Berger]] and [[Ieke Moerdijk]], avoids these problems. There is a similar notion (which however does not comprise all Reedy categories) due to [[Denis-Charles Cisinski]]. A further generalization which allows noninvertible level morphisms is a \begin{itemize}% \item [[c-Reedy category]]. \end{itemize} \hypertarget{elegant_reedy_categories}{}\subsubsection*{{Elegant Reedy categories}}\label{elegant_reedy_categories} The notion of [[elegant Reedy category]], introduced by [[Julie Bergner]] and [[Charles Rezk]], is a \emph{restriction} of the notion which captures the property that the Reedy model structure and injective model structure coincide. Several important Reedy categories are elegant, such as the $\Delta$ and $\Theta$. \hypertarget{enriched_reedy_categories}{}\subsubsection*{{Enriched Reedy categories}}\label{enriched_reedy_categories} There is also a generalization of the notion of Reedy category to the context of [[enriched category theory]]: this is an [[enriched Reedy category]]. \hypertarget{reedy_categories_with_fibrant_constants}{}\subsubsection*{{Reedy categories with fibrant constants.}}\label{reedy_categories_with_fibrant_constants} If $R$ is a [[direct category]], then for any [[model category]] $M$ the colimit functor $\colim_R \colon M^R \to M$ is a [[Quillen adjunction|left Quillen functor]]. However, there are non-direct Reedy categories with the same property, they are called [[Reedy category with fibrant constants|Reedy categories with fibrant constants]]. \hypertarget{references}{}\subsection*{{References}}\label{references} See the references at \emph{[[Reedy model structure]]} [[!redirects Reedy categories]] \end{document}