\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Reissner-Nordström spacetime} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{metric}{Metric}\dotfill \pageref*{metric} \linebreak \noindent\hyperlink{horizons}{Horizons}\dotfill \pageref*{horizons} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InteriorSolutions}{Interior solutions}\dotfill \pageref*{InteriorSolutions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Reissner-Nordstr\"o{}m solution to the [[equations of motion]] of [[Einstein-Maxwell theory]] describes the [[spacetime]] outside of a [[electric charge|electrically charged]] (and/or [[magnetic charge|magnetically charged]]) point [[mass]], hence describes a \emph{charged} [[black hole]]. \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{metric}{}\subsubsection*{{Metric}}\label{metric} For [[mass]] $M$, [[electric charge]] $Q$ and [[magnetic charge]] $P$ the [[pseudo-Riemannian metric]] for the Reissner-Nordstr\"o{}m spacetime is, in [[polar coordinates]] $(t,r,\phi,\theta)$ on $\mathbb{R}^4 - \{0\} = \mathbb{R} \times \mathbb{R}_{\gt 0} \times S^2$, given by \begin{displaymath} ds^2_{M,Q,P} \coloneqq - H d t^2 + H^{-1} d r^2 + r^2 ds_{S^2}^2 \end{displaymath} where (in natural units) \begin{displaymath} H \coloneqq 1 - \frac{M}{r} + \frac{Q^2 + P^2}{r^2} \,. \end{displaymath} The corresponding [[Faraday tensor]]/electromagnetic [[field strength]] [[curvature|curvature 2-form]] is \begin{displaymath} F = \frac{Q}{r^2} d t \wedge d r + P \sin(\theta) d\theta \wedge d\phi \,. \end{displaymath} \begin{quote}% (check sign) \end{quote} \hypertarget{horizons}{}\subsubsection*{{Horizons}}\label{horizons} The function $H$ above vanishes at \begin{displaymath} r_{\pm} \coloneqq \tfrac{1}{2}\left( M \pm \sqrt{M^2 - 4 (P^2 + Q^2)} \right) \,. \end{displaymath} The larger of the two solutions is an [[event horizon]], the other is a [[Cauchy horizon]]. In the case that they coincide, for $M = 2\sqrt{Q^2 + P^2}$, one speaks of an [[extremal black hole]] (at least when also $P = 0$). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{InteriorSolutions}{}\subsubsection*{{Interior solutions}}\label{InteriorSolutions} Instead of having a mass and charge of singular support at the singular locus of the RN-spacetime, one may consider a finite mass and charge distribution, i.e. a ``charged star''. Outside of this mass/charge distribution then the metric is the RN-spacetime as above, but in the interior it becomes smoothed out to a non-singular interior solution. Several attempts have been made to round out the Reissner metric with an interior. \hyperlink{TiwariRaoKanakamelda85}{Tiwari-Rao-Kanakamedala 85} found an interior with the condition $g_{11} g_{44} = 1$, which obviously holds for the exterior Reissner, but does not match the interior Schwarzschild solution for e = 0. \hyperlink{KyleMartin67}{Kyle-Martin 67} found a rather complicated solution. They discussed the self-energy of the fields of charged matter. \hyperlink{Wilson69}{Wilson 69} modified this solution assuming a different value for the total charge. \hyperlink{CohenCohen69}{Cohen-Cohen 69} applied this solution to the special case of a charged thin shell and showed that the energy density of the electromagnetic field contributes to the mass. \hyperlink{Boulware73}{Boulware 73} studied the time development of thin shells. \hyperlink{GravesBrill60}{Graves-Brill 60} considered a possible oscillatory character of the Reissner-Nordstr\"o{}m metric by examining the metric by Kruskal-like coordinates \hyperlink{Bekenstein71}{Bekenstein 71} studied another ansatz for the stress-energy-tensor of charged matter. \hyperlink{KroriJayantimala75}{Krori-Jayantimala 75} made use of the same ansatz, and he found a solution free of singularities. \hyperlink{GautreauHoffman73}{Gautreau-Hoffman 73} studied the sources of Weyl-type electrovac fields. They obtained the parameters for the source with the junction condition for the exterior solution. \hyperlink{Efinger64}{Efinger 64} deduced the stability of a charged particle from the self-energy of the gravitation field. In \hyperlink{Burghardt09}{Burghardt 09} is constructed another interior solution with the help of embedding the geometry in a 5-dimensional flat space. (Literature summary taken from \hyperlink{Burghardt09}{Burghardt 09}) See also (\hyperlink{Mehra82}{Mehra 82}, \hyperlink{WX87}{WX 87}, \hyperlink{GuptaKumarPratibha12}{Gupta-Kumar-Pratibha 12}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[no-hair theorem]] \end{itemize} [[!include charged and rotating black holes -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Review includes \begin{itemize}% \item Mammadov, \emph{Reissner-Nordstr\"o{}m metric} (\href{http://gmammado.mysite.syr.edu/notes/RN_Metric.pdf}{pdf}) \item Wikipedia, \emph{} \end{itemize} That the [[near horizon geometry]] of the [[extremal black hole|extremal]] Reissner-Nordström black hole in 4d ins 2d [[anti de Sitter spacetime]] times the [[2-sphere]], $AdS_2 \times S^2$, was observed in \begin{itemize}% \item [[Gary Gibbons]], in F. del Aguila, [[J. de Azcarraga]], [[Luis Ibanez]] (eds.) \emph{Supersymmetry, Supergravity and Related Topics}(see section 11.1 here: \href{http://www.hartmanhep.net/topics2015/11-nearhorizon.pdf}{pdf} [[ExtremalReissnerNordstrom.pdf:file]]) \end{itemize} Discussion of interior solutions includes \begin{itemize}% \item Graves J. C., Brill D. R., \emph{Oscillatory character of Reissner-Nordstr\"o{}m metric for an ideal charged wormehole.} Phys. Rev. 120, 1507, 1960 \item Efinger H. J., \emph{Der kugelsymmetrische Fall einer statischen Ladungsverteilung bei stark komprimierter Materie in der allgemeinen Relativit\"a{}tstheorie. Acta Phys. Austr. 17, 347, 1964.} \emph{\"U{}ber die Selbstenergie und Ladung eines durch Gravitationswirkung stabilisierten Teilchens in einem gekr\"u{}mmten Raum}, Acta Phys. Austr. 188, 31, 1965 \item Kyle C. F., Martin A. W., \emph{Self-energy considerations in general relativity and the exact fields of charge and mass distribution}, Nuov. Cim 50, 883, 1967 \item Cohen J. M., Cohen M. D., \emph{Exact fields of charge and mass distributions in general relativity}. Nuov. Cim. 60, 241, 1969 \item Wilson, S. J., \emph{Exact solution of a static charged sphere in general relativity}. Can. Journ. Phys. 47, 2401, 1969 \item [[Jacob Bekenstein]], \emph{Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balls}, Phys. Rev. D 4, 2185, 1971 \item Boulware, D. G., \emph{Naked singularities, thin shells, and the Reissner-Nordstr\"o{}m metric}, Phys. Rev. D 8, 2363, 1973 \item Gautreau R., Hoffman R. B., The structure of Weyl-type electrovac fields in general relativity. Nouv. Cim. 16 B, 162, 1973 \item Krori K. D., Jayantimala B., \emph{A singularity-free solution for a charged fluid in general relativity}, J. Phys. A 8, 508, 1975 \item A.L. Mehra, \emph{An interior solution for a charged sphere in general relativity}, Physics Letters A Volume 88, Issue 4, 8 March 1982, Pages 159-161 (\href{http://www.sciencedirect.com/science/article/pii/0375960182905515}{publisher}) \item Tiwari R. N., Rao J. R., Kanakamedala R. R., \emph{Electromagnetic mass models in general relativity}, Phys. Rev. D 30, 489, 1984 \item Wang Xingxiang, \emph{Exact Solution of a Static Charged Sphere in General Relativity}, General Relativity and Gravitation, Vol. 19, No. 7, 1987 \item Rainer Burghardt, \emph{Reissner exterior and interior} \href{https://arxiv.org/abs/0902.0918}{arXiv:0902.0918} \item Gupta, Y. K.; Kumar, Jitendra; Pratibha, \emph{A Class of Well Behaved Charged Analogues of Schwarzchild's Interior Solution}, International Journal of Theoretical Physics October 2012, Volume 51, Issue 10, pp 3290--3302 (\href{http://link.springer.com/article/10.1007%2Fs10773-012-1209-4}{publisher}) \end{itemize} [[!redirects Reissner-Nordström spacetimes]] [[!redirects Reissner-Nordstrom spacetime]] [[!redirects Reissner-Nordstrom spacetimes]] [[!redirects Reissner-Nordström black hole]] [[!redirects Reissner-Nordström black holes]] [[!redirects Reissner-Nordstrom black hole]] [[!redirects Reissner-Nordstrom black holes]] [[!redirects charged black hole]] [[!redirects charged black holes]] \end{document}