\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Riemann surface} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_facts}{Basic facts}\dotfill \pageref*{basic_facts} \linebreak \noindent\hyperlink{complexified_differentials}{Complexified differentials}\dotfill \pageref*{complexified_differentials} \linebreak \noindent\hyperlink{PicardGroupOfHolomorphicLineBundles}{Picard group of holomorphic line bundles}\dotfill \pageref*{PicardGroupOfHolomorphicLineBundles} \linebreak \noindent\hyperlink{central_theorems}{Central theorems}\dotfill \pageref*{central_theorems} \linebreak \noindent\hyperlink{homotopy_type}{Homotopy type}\dotfill \pageref*{homotopy_type} \linebreak \noindent\hyperlink{branched_covers}{Branched covers}\dotfill \pageref*{branched_covers} \linebreak \noindent\hyperlink{function_field_analogy}{Function field analogy}\dotfill \pageref*{function_field_analogy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A Riemann surface is a $1$-dimensional [[algebraic geometry|algebro-geometric]] object with good properties. The name `surface' comes from the classical case, which is $1$-dimensional over the [[complex numbers]] and therefore $2$-dimensional over the [[real numbers]]. There are several distinct meaning of what is a Riemann surface, and it can be considered in several generalities. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Classically, a \textbf{Riemann surface} is a [[connected space|connected]] complex-$1$-dimensional [[complex manifold]], in the strictest sense of `manifold'. In other words, it's a [[Hausdorff space|Hausdorff]] [[second countable space]] $M$ which is locally [[homeomorphism|homeomorphic]] to the [[complex plane]] $\mathbb{C}$ via charts (i.e., [[homeomorphisms]]) $\phi_i:U_i \to V_i$ for $U_i \subset M, V_i \subset \mathbb{C}$ open and such that $\phi_j \circ \phi_i^{-1}: V_i \cap V_j \to V_i \cap V_j$ is [[holomorphic function|holomorphic]]. There are generalizations e.g. over [[local field]]s in [[rigid analytic geometry]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Evidently an [[open subspace]] of a Riemann surface is a Riemann surface. In particular, an open subset of $\mathbb{C}$ is a Riemann surface in a natural manner. The [[Riemann sphere]] $P^1(\mathbb{C}) := \mathbb{C} \cup \{ \infty \}$ or $S^2$ is a Riemann surface with the open sets $U_1 = \mathbb{C}, U_2 = \mathbb{C} - \{0\} \cup \{\infty\}$ and the charts \begin{displaymath} \phi_1 =z, \;\phi_2 = \frac{1}{z}. \end{displaymath} The transition map is $\frac{1}{z}$ and thus holomorphic on $U_1 \cap U_2 = \mathbb{C}^*$. An important example comes from [[analytic continuation]], which we will briefly sketch below. A \textbf{function element} is a pair $(f,V)$ where $f: V \to \mathbb{C}$ is holomorphic and $V \subset \mathbb{C}$ is an open disk. Two function elements $(f,V), (g,W)$ are said to be \textbf{direct analytic continuations} of each other if $V \cap W \neq \emptyset$ and $f \equiv g$ on $V \cap W$. By piecing together direct analytic continuations on a curve, we can talk about the analytic continuation of a function element along a curve (which may or may not exist, but if it does, it is unique). Starting with a given function element $\gamma = (f,V)$, we can consider the totality $X$ of all equivalence classes of function elements that can be obtained by continuing $\gamma$ along curves in $\mathbb{C}$. Then $X$ is actually a Riemann surface. Indeed, we must first put a topology on $X$. If $(g,W) \in X$ with $W=D_r(w_0)$ centered at $w_0$, then let a neighborhood of $g$ be given by all function elements $(g_w, W')$ for $w \in W, W' \subset W$; these form a basis for a suitable topology on $X$. Then the coordinate projections $(g,W) \to w_0$ form appropriate local coordinates. In fact, there is a globally defined map $X \to \mathbb{C}$, whose image in general will be a proper subset of $\mathbb{C}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_facts}{}\subsubsection*{{Basic facts}}\label{basic_facts} Since we have local coordinates, we can define a map $f: X \to Y$ of Riemann surfaces to be \textbf{holomorphic} or \textbf{regular} if it is so in local coordinates. In particular, we can define a holomorphic complex function as a holomorphic map $f: X \to \mathbb{C}$; for [[meromorphic function|meromorphicity]], this becomes $f: X \to S^2$. Many of the usual theorems of elementary [[complex analysis]] (that is to say, the local ones) transfer immediately to the case of Riemann surfaces. For instance, we can locally get a [[Laurent series|Laurent expansion]], etc. \begin{theorem} \label{}\hypertarget{}{} Let $f: X \to Y$ be a regular map. If $X$ is compact and $f$ is nonconstant, then $f$ is surjective and $Y$ compact. \end{theorem} To see this, note that $f(X)$ is [[compact space|compact]], and an open subset by the [[open mapping theorem]], so the result follows by connectedness of $Y$. \hypertarget{complexified_differentials}{}\subsubsection*{{Complexified differentials}}\label{complexified_differentials} Since a Riemann surface $X$ is a $2$-dimensional [[smooth manifold]] in the usual (real) sense, it is possible to do the usual [[differential form|exterior calculus]]. We could consider a 1-form to be a section of the (usual) [[cotangent bundle]] $T^*(X)$, but it is more natural to take the \textbf{complexified cotangent bundle} $\mathbb{C} \otimes_{\mathbb{R}} T^*(X)$, which we will in the future just abbreviate $T^*(X)$; this should not be confusing since we will only do this when we talk about complex manifolds. Sections of this bundle will be called (complex-valued) 1-forms. Similarly, we do the same for 2-forms. If $z = x + i y$ is a local coordinate on $X$, defined say on $U \subset X$, define the (complex) differentials \begin{displaymath} d z = d x + i d y , \;d\bar{z} = d x - i d y. \end{displaymath} These form a basis for the complexified cotangent space at each point of $U$. There is also a dual basis \begin{displaymath} \frac{\partial}{\partial z } := \frac{1}{2}\left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}\right), \; \frac{\partial}{\partial \bar{z} } := \frac{1}{2}\left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}\right) \end{displaymath} for the complexified tangent space. We now claim that we can split the tangent space $T(X) = T^{1,0}(X) + T^{0,1}(X)$, where the former consists of multiples of $\frac{\partial}{\partial z}$ and the latter of multiples of $\frac{\partial}{\partial \bar{z}}$; clearly a similar thing is possible for the cotangent space. This is always possible locally, and a holomorphic map preserves the decomposition. One way to see the last claim quickly is that given $g: U \to \mathbb{C}$ for $U \subset \mathbb{C}$ open and $0 \in U$ (just for convenience), we can write \begin{displaymath} g(z) = g(0) + Az + A' \bar{z} + o(|z|) \end{displaymath} where $A = \frac{\partial g }{\partial z }(0), A' = \frac{\partial g }{\partial \bar{z} }(0)$, which we will often abbreviate as $g_z(0), g_{\bar{z}}(0)$. If $\psi: U' \to U$ is holomorphic and conformal sending $z_0 \in U' \to 0 \in U$, we have \begin{displaymath} g(\phi(\zeta)) = g(\phi(0)) + A \phi'(z_0)(\zeta-z_0) + A' \overline{ \phi'(z_0)(\zeta-z_0)} + o(|z|); \end{displaymath} in particular, $\phi$ preserves the decomposition of $T_0(\mathbb{C})$. Given $f: X \to \mathbb{C}$ smooth, we can consider the projections of the 1-form $df$ onto $T^{1,0}(X)$ and $T^{0,1}(X)$, respectively; these will be called $\partial f, \overline{\partial} f$. Similarly, we define the corresponding operators on 1-forms: to define $\partial \omega$, first project onto $T^{0,1}(M)$ (the reversal is intentional!) and then apply $d$, and vice versa for $\overline{\partial} \omega$. In particular, if we write in local coordinates $\omega = u d z + v d\bar{z}$, then \begin{displaymath} \partial \omega = d( v d \bar{z}) = v_z d z \wedge d\bar{z}, \end{displaymath} and \begin{displaymath} \overline{\partial} \omega = d( u d z) = u_{\bar{z}} d\bar{z} \wedge d z. \end{displaymath} To see this, we have tacitly observed that $d v = v_z d z + v_{\bar{z}} d\bar{z}$. \hypertarget{PicardGroupOfHolomorphicLineBundles}{}\subsubsection*{{Picard group of holomorphic line bundles}}\label{PicardGroupOfHolomorphicLineBundles} The [[Picard group]] of a Riemann surface is the group of [[holomorphic line bundles]] in it. Introductions include (\hyperlink{Bobenko}{Bobenko, section 8}). See also at \emph{[[Narasimhan–Seshadri theorem]]} and at \emph{\href{moduli+space+of+connections#FlatConnectionsOverATorus}{moduli space of connections -- Flat connections over a torus}}. \hypertarget{central_theorems}{}\subsubsection*{{Central theorems}}\label{central_theorems} In the theory of Riemann surfaces, there are several important theorems. Here are two: \begin{itemize}% \item The [[Riemann-Roch theorem]], which analyzes the vector space of meromorphic functions satisfying certain conditions on zeros and poles; \item The [[uniformization theorem]], which partially classifies Riemann surfaces. \end{itemize} \hypertarget{homotopy_type}{}\subsubsection*{{Homotopy type}}\label{homotopy_type} A [[compact topological space|compact]] Riemann surface of [[genus]] $g \geq 2$ is a [[homotopy 1-type]]. The [[fundamental groupoid]] is a [[Fuchsian group]]. (\href{http://mathoverflow.net/a/93340/381}{MO discussion}) \hypertarget{branched_covers}{}\subsubsection*{{Branched covers}}\label{branched_covers} By the [[Riemann existence theorem]], every connected compact [[Riemann surface]] admits the [[structure]] of a [[branched cover of the Riemann sphere]]. (\href{http://mathoverflow.net/a/53286/381}{MO discussion}) \hypertarget{function_field_analogy}{}\subsubsection*{{Function field analogy}}\label{function_field_analogy} [[!include function field analogy -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[annulus]], [[2-sphere]], [[trinion]] \item [[Teichmüller space]] \item [[moduli space of Riemann surfaces]] \item [[super Riemann surface]] \item [[stable vector bundle]] \item [[elliptic curve]] \item [[worldsheet]] \item [[beta-gamma system]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Historical references include \begin{itemize}% \item [[Hermann Weyl]], \emph{Die Idee der Riemannschen Fl\"a{}che}, 1913 (\_The concept of a Riemann surface\_) (on the book, by Peter Schreiber, 2013: \href{http://mathineurope.eu/en/home/47-information/math-calendar/971-1913-publication-of-the-concept-of-a-riemann-surface-by-hermann-weyl}{web}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Alexander Bobenko]], \emph{Compact Riemann Surfaces} lecture notes (\href{http://page.math.tu-berlin.de/~bobenko/Lehre/Skripte/RS.pdf}{pdf}) \item [[Eberhard Freitag]], \emph{Riemann surfaces -- Sheaf theory, Riemann Surfaces, Automorphic forms}, 2013 (\href{http://www.rzuser.uni-heidelberg.de/~t91/skripten/riemfl.pdf}{pdf}) \end{itemize} [[!redirects Riemann surfaces]] \end{document}