\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{SO(8)} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SubgroupLattice}{Subgroup lattice}\dotfill \pageref*{SubgroupLattice} \linebreak \noindent\hyperlink{homotopy_groups}{Homotopy groups}\dotfill \pageref*{homotopy_groups} \linebreak \noindent\hyperlink{cohomology_of_classifying_spaces}{Cohomology of classifying spaces}\dotfill \pageref*{cohomology_of_classifying_spaces} \linebreak \noindent\hyperlink{structure_and_exceptional_geometry}{$G$-Structure and exceptional geometry}\dotfill \pageref*{structure_and_exceptional_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{subgroup_lattice_2}{Subgroup lattice}\dotfill \pageref*{subgroup_lattice_2} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Among all [[special orthogonal groups]] $SO(n)$, the case of $SO(8)$ is special, since in the [[ADE classification]] of [[simple Lie groups]] it corresponds to [[D4]], which makes its [[representation theory]] enjoy \emph{[[triality]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SubgroupLattice}{}\subsubsection*{{Subgroup lattice}}\label{SubgroupLattice} \begin{prop} \label{Spin7SubgroupsInSpin8}\hypertarget{Spin7SubgroupsInSpin8}{} \textbf{([[Spin(7)]]-[[subgroups]] in [[Spin(8)]])} There are precisely 3 [[conjugacy classes of subgroups|conjugacy classes]] of [[Spin(7)]]-[[subgroups]] inside [[Spin(8)]], and the [[triality]] group $Out(Spin(8))$ [[action|acts]] [[transitive action|transitively]] on these three classes. $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}dr{\tt \symbol{94}}\{$\backslash$iota'\} $\backslash$ \& $\backslash$mathrm\{Spin\}(8) \& $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}l{\tt \symbol{94}}-\{$\backslash$iota\} $\backslash$ $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}ur\emph{-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{Varadarajan01}{Varadarajan 01, Theorem 5 on p. 6}, see also \hyperlink{Kollross02}{Kollross 02, Prop. 3.3 (1)}) \begin{prop} \label{G2IsIntersectionOfSpin7SubgroupsInSpin8}\hypertarget{G2IsIntersectionOfSpin7SubgroupsInSpin8}{} \textbf{([[G2]] is [[intersection]] of [[Spin(7)]]-[[subgroups]] of [[Spin(8)]])} The [[intersection]] inside [[Spin(8)]] of any two [[Spin(7)]]-subgroups from distinct [[conjugacy classes of subgroups]] (according to Prop. \ref{Spin7SubgroupsInSpin8}) is the [[exceptional Lie group]] [[G2]], hence we have [[pullback squares]] of the form $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} G\_2 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d \& $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d{\tt \symbol{94}}-\{$\backslash$iota{\tt \symbol{94}}$\backslash$prime\} $\backslash$ $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r\emph{-\{$\backslash$iota\} \& $\backslash$mathrm\{Spin\}(8) $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{Varadarajan01}{Varadarajan 01, Theorem 5 on p. 13}) \begin{prop} \label{}\hypertarget{}{} We have the following [[commuting diagram]] of [[subgroup]] inclusions, where each [[square]] exhibits a [[pullback]]/[[fiber product]], hence an [[intersection]] of subgroups: $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} $\backslash$mathrm\{SU\}(2) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ar@\{\}dr|-\{ $\backslash$mbox\{ $\backslash$tiny (pb) \} \} \& $\backslash$mathrm\{SU\}(3) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ar@\{\}dr|-\{ $\backslash$mbox\{ $\backslash$tiny (pb) \} \} \& $\backslash$mathrm\{G\}\_2 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ar@\{\}dr|-\{ $\backslash$mbox\{ $\backslash$tiny (pb) \} \} \& $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d{\tt \symbol{94}}\{B $\backslash$iota'\} $\backslash$ $\backslash$mathrm\{Spin\}(5) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r \& $\backslash$mathrm\{Spin\}(6) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r \& $\backslash$mathrm\{Spin\}(7) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}r\emph{-\{$\backslash$iota\} \& $\backslash$mathrm\{Spin\}(8) $\backslash$end\{xymatrix\} $\backslash$end\{center\}} Here in the bottom row we have the [[Lie groups]] [[Spin(5)]] $\hookrightarrow$ [[Spin(6)]] $\hookrightarrow$ [[Spin(7)]] $\hookrightarrow$ [[Spin(8)]] with their canonical [[subgroup]]-inclusions, while in the top row we have [[SU(2)]] $\hookrightarrow$ [[SU(3)]] $\hookrightarrow$ [[G2]] $\hookrightarrow$ [[Spin(7)]] and the right vertical inclusion $B \iota'$ is the [[delooping]] of one of the two non-standard inclusions, according to Prop. \ref{Spin7SubgroupsInSpin8}. \end{prop} \begin{proof} The square on the right is that from Prop. \ref{G2IsIntersectionOfSpin7SubgroupsInSpin8}. The square in the middle is \hyperlink{Varadarajan01}{Varadarajan 01, Lemma 9 on p. 10}. The statement also follows with \hyperlink{Onishchik93}{Onishchik 93, Table 2, p. 144}: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``SO8SubgroupIntersection.jpg'', ``width'': 690 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \end{proof} \begin{prop} \label{Spin3DotSpin5SubgroupsInSO8}\hypertarget{Spin3DotSpin5SubgroupsInSO8}{} \textbf{([[Spin(5).Spin(3)]]-[[subgroups]] in [[SO(8)]])} The [[direct product group]] [[SO(3)]] $\times$ [[SO(5)]] together with the groups [[Sp(2).Sp(1)]] and $Sp(1) \cdot Sp(2)$, with their canonical inclusions into [[SO(8)]], form 3 [[conjugacy classes of subgroups|conjugacy classes]] of [[subgroups]] inside [[SO(8)]], and the [[triality]] group $Out(Spin(8))$ [[action|acts]] [[transitive action|transitively]] on these three classes. $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} Sp(2)$\backslash$cdot Sp(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}dr{\tt \symbol{94}}\{$\backslash$iota'\} $\backslash$ \& SO(8) \& SO(3) $\backslash$times SO(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}l{\tt \symbol{94}}-\{$\backslash$iota\} $\backslash$ Sp(1) $\backslash$cdot Sp(2) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}ur\emph{-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{Kollross02}{Kollross 02, Prop. 3.3 (3)}) Similarly: \begin{prop} \label{Spin3DotSpin5SubgroupsInSpin8}\hypertarget{Spin3DotSpin5SubgroupsInSpin8}{} \textbf{([[Spin(5).Spin(3)]]-[[subgroups]] in [[Spin(8)]])} The groups [[Spin(5).Spin(3)]], [[Sp(2).Sp(1)]] and $Sp(1) \cdot Sp(2)$, with their canonical inclusions into [[Spin(8)]], form 3 [[conjugacy classes of subgroups|conjugacy classes]] of [[subgroups]] inside [[Spin(8)]], and the [[triality]] group $Out(Spin(8))$ [[action|acts]] [[transitive action|transitively]] on these three classes. $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} Sp(2)$\backslash$cdot Sp(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}dr{\tt \symbol{94}}\{$\backslash$iota'\} $\backslash$ \& Spin(8) \& Spin(3) $\backslash$cdot Spin(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}l{\tt \symbol{94}}-\{$\backslash$iota\} $\backslash$ Sp(1) $\backslash$cdot Sp(2) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}ur\emph{-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{CadekVanzura97}{Čadek-Vanžura 97, Sec. 2}) In summary we have these subgroup inclusions $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Sp\}(1) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(2) $\backslash$ar@\{=\}dddddr $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ddrr|-\{ $\backslash$iota' \} $\backslash$ $\backslash$ \&\& $\backslash$mathrm\{Spin\}(8) $\backslash$ar@\{-\guillemotright{}\}dddddr \&\& $\backslash$mathrm\{Spin\}(3) \{$\backslash$cdot\} $\backslash$mathrm\{Spin\}(5) $\backslash$ar@\{-\guillemotright{}\}dddddr $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ll|-\{$\backslash$iota\} $\backslash$ $\backslash$ $\backslash$mathrm\{Sp\}(2) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(1) $\backslash$ar@\{=\}dddddr $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}uurr |\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\{ $\backslash$phantom\{AA $\backslash$atop AA\} \} |\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}{\tt \symbol{62}}\{ $\backslash$iota'` \} $\backslash$ \& $\backslash$mathrm\{Sp\}(1) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(2) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ddrr|-\{ $\backslash$iota' \} $\backslash$ $\backslash$ \&\&\& $\backslash$mathrm\{SO\}(8) \&\& $\backslash$mathrm\{SO\}(3) $\backslash$times $\backslash$mathrm\{SO\}(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ll|-\{$\backslash$iota\} $\backslash$ $\backslash$ \& $\backslash$mathrm\{Sp\}(2) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}uurr|-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} permuted by triality: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``TrialityOnSp2Sp1.jpg'', ``width'': 680 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{FSS19}{FSS 19, Sec. 3.3} \end{quote} $\backslash$linebreak \hypertarget{homotopy_groups}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups} The [[homotopy groups]] of $SO(8)$ in [[low-dimensional topology|low degrees]]: \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l} $G$&$\pi_1$&$\pi_2$&$\pi_3$&$\pi_4$&$\pi_5$&$\pi_6$&$\pi_7$&$\pi_8$&$\pi_9$&$\pi_10$&$\pi_11$&$\pi_12$&$\pi_13$&$\pi_14$&$\pi_15$\\ \hline $SO(8)$&$\mathbb{Z}_2$&$0$&$\mathbb{Z}$&$0$&$0$&$0$&$\mathbb{Z}^{\oplus 2}$&$\mathbb{Z}_{2}^{\oplus 3}$&$\mathbb{Z}_{2}^{\oplus 3}$&$\mathbb{Z}_{8} \oplus \mathbb{Z}_{24}$&$\mathbb{Z}_2 \oplus \mathbb{Z}$&0&$\mathbb{Z}^{\oplus 2}$&$\mathbb{Z}_2\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{120}\oplus\mathbb{Z}_{2520}$&$\mathbb{Z}_2^{\oplus 7}$\\ \end{tabular} $\backslash$linebreak \hypertarget{cohomology_of_classifying_spaces}{}\subsubsection*{{Cohomology of classifying spaces}}\label{cohomology_of_classifying_spaces} \begin{prop} \label{CohomologyRingOfSpin8}\hypertarget{CohomologyRingOfSpin8}{} The [[ordinary cohomology|ordinary]] [[cohomology ring]] of the [[classifying space]] $B Spin(8)$ is: \textbf{1)} with [[coefficients]] in the [[cyclic group of order 2]]: \begin{displaymath} H^\bullet \big( B Spin(8), \mathbb{Z}_2 \big) \;\simeq\; \mathbb{Z} \big[ w_4, w_6, w_7, w_8, \; \rho_2 \left( \tfrac{1}{4} \left( p_2 - \big(\tfrac{1}{2}p_1\big)^2 - 2 \chi \right) \right) \big] \end{displaymath} where $w_i$ are the [[universal characteristic class|universal]] [[Stiefel-Whitney classes]], and where \begin{displaymath} \rho_2 \;\colon\; H^\bullet(B Spin(8), \mathbb{Z}) \to H^\bullet(B Spin(8), \mathbb{Z}_2) \end{displaymath} is [[cyclic group|mod 2 reduction]] \textbf{2)} with [[coefficients]] in the [[integers]]: \begin{displaymath} H^\bullet \big( B Spin(8), \mathbb{Z} \big) \;\simeq\; \mathbb{Z} \Big[ \tfrac{1}{2}p_1, \; \tfrac{1}{4} \left( p_2 - \big(\tfrac{1}{2}p_1\big)^2 \right) - \tfrac{1}{2}\chi , \; \chi, \; \beta(w_6) \Big] / \big\langle 2 \beta(w_6)\big\rangle \,, \end{displaymath} where $p_1$ is the [[first fractional Pontryagin class]], $p_2$ is the [[second Pontryagin class]], $\chi$ is the [[Euler class]], and \begin{displaymath} \beta \;\colon\; H^\bullet \big( B Spin(8), \mathbb{Z}_2 \big) \longrightarrow H^{\bullet + 1} \big( B Spin(8), \mathbb{Z} \big) \end{displaymath} is the [[Bockstein homomorphism]]. Moreover, we have the following relations: \begin{displaymath} \begin{aligned} \rho_2\left( \tfrac{1}{2}p_1 \right) & = w_4 \\ \rho_2\big( \chi\big) & = w_8 \end{aligned} \end{displaymath} \end{prop} This is due to \hyperlink{Quillen71}{Quillen 71}, \hyperlink{CadekVanzura95}{Čadek-Vanžura 95}, see \hyperlink{CadekVanzura97}{Čadek-Vanžura 97, Lemma 4.1}. \begin{prop} \label{}\hypertarget{}{} Consider the [[looping and delooping|delooping]] of the [[triality]] automorphism relating [[Sp(2).Sp(1)]] with [[Spin(5).Spin(3)]] (Prop. \ref{Spin3DotSpin5SubgroupsInSpin8}) on [[classifying spaces]] \begin{displaymath} \itexarray{ B \big( Spin(5) \cdot Spin(3) \big) &\hookrightarrow& B Spin(8) \\ \big\downarrow && \big\downarrow^{ B \mathrlap{tri} } \\ B \big( Sp(2) \cdot Sp(1) \big) &\hookrightarrow& B Spin(8) } \end{displaymath} Then the pullback of the [[universal characteristic classes]] of $B Spin(8)$ (from Prop. \ref{CohomologyRingOfSpin8}) along $B tri$ is as follows: \begin{displaymath} \big( B tri \big)^\ast \;\colon\; \begin{aligned} \tfrac{1}{2} p_1 & \mapsto \tfrac{1}{2} p_1 \\ \chi & \mapsto - \tfrac{1}{4} \big( p_2 - \big(\tfrac{1}{2}p_1\big)^2 \big) + \tfrac{1}{2}\chi \\ \tfrac{1}{4} \big( p_2 - \big(\tfrac{1}{2}p_1\big)^2 \big) - \tfrac{1}{2}\chi & \mapsto - \chi \end{aligned} \end{displaymath} \end{prop} (\hyperlink{CadekVanzura97}{Čadek-Vanžura 97, Lemma 4.2}) In fact $tri^{-1} = tri$. Hence, in rational cohomology: \begin{displaymath} \begin{aligned} \big( B tri \big)^\ast \big( \tfrac{1}{4}p_2 \big) & = \big( B tri \big)^\ast \Big( \big( \tfrac{1}{4}p_2 - \big(\tfrac{1}{4}p_1\big)^2 - \tfrac{1}{2}\chi \big) + \big(\tfrac{1}{4}p_1\big)^2 + \tfrac{1}{2}\chi \Big) \\ & = -\chi + \big(\tfrac{1}{4}p_1\big)^2 - \tfrac{1}{2} \big( \tfrac{1}{4}p_2 - \big(\tfrac{1}{4}p_1\big)^2 - \tfrac{1}{2}\chi \big) \end{aligned} \end{displaymath} $\backslash$linebreak \hypertarget{structure_and_exceptional_geometry}{}\subsubsection*{{$G$-Structure and exceptional geometry}}\label{structure_and_exceptional_geometry} [[!include Spin(8)-subgroups and reductions -- table]] $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include low dimensional rotation groups -- table]] $\backslash$linebreak \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Robert Bryant]], \emph{Remarks on Spinors in Low Dimension} (\href{https://services.math.duke.edu/~bryant/Spinors.pdf}{pdf}, [[BryantRemarksOnSpinorsInLowDimension.pdf:file]]) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{} \end{itemize} \hypertarget{subgroup_lattice_2}{}\subsubsection*{{Subgroup lattice}}\label{subgroup_lattice_2} On the [[subgroup lattice]] of [[Spin(8)]] \begin{itemize}% \item A. L. Onishchik (ed.) \emph{Lie Groups and Lie Algebras} \begin{itemize}% \item \emph{I.} A. L. Onishchik, E. B. Vinberg, \emph{Foundations of Lie Theory}, \item \emph{II.} V. V. Gorbatsevich, A. L. Onishchik, \emph{Lie Transformation Groups} \end{itemize} Encyclopaedia of Mathematical Sciences, Volume 20, Springer 1993 \item [[Veeravalli Varadarajan]], \emph{Spin(7)-subgroups of SO(8) and Spin(8)}, Expositiones Mathematicae Volume 19, Issue 2, 2001, Pages 163-177 (, \href{https://core.ac.uk/download/pdf/81114499.pdf}{pdf}) \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{On $Sp(2)$ and $Sp(2) \cdot Sp(1)$-structures in 8-dimensional vector bundles}, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (\href{https://www.jstor.org/stable/43737249}{jstor:43737249}) \item Megan M. Kerr, \emph{New examples of homogeneous Einstein metrics}, Michigan Math. J. Volume 45, Issue 1 (1998), 115-134 (\href{https://projecteuclid.org/euclid.mmj/1030132086}{euclid:1030132086}) \item Andreas Kollross, Prop. 3.3 of \emph{A Classification of Hyperpolar and Cohomogeneity One Actions}, Transactions of the American Mathematical Society Vol. 354, No. 2 (Feb., 2002), pp. 571-612 (\href{https://www.jstor.org/stable/2693761}{jstor:2693761}) \end{itemize} Discussion with an eye towards foundations of [[M-theory]]: \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M-theory anomaly cancellation]]} (\href{https://arxiv.org/abs/1904.10207}{arXiv:1904.10207}) \end{itemize} \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} The [[integral cohomology]] of the [[classifying spaces]] $B SO(8)$ and $B Spin(8)$ and the [[action]] of [[triality]] on these is discussed in \begin{itemize}% \item [[Alfred Gray]], Paul S. Green, \emph{Sphere transitive structures and the triality automorphism}, Pacific J. Math. Volume 34, Number 1 (1970), 83-96 (\href{https://projecteuclid.org/euclid.pjm/1102976640}{euclid:1102976640}) \item [[Daniel Quillen]], \emph{The mod 2 cohomology rings of extra-special 2-groups and the spinor groups}, Math. Ann . 194 (1971), 19 \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes}, Commentationes Mathematicae Universitatis Carolinae, vol. 36 (1995), issue 2, pp. 377-394 (\href{https://dml.cz/handle/10338.dmlcz/118764}{dml-cz:118764}) \item [[Martin Čadek]], [[Jiří Vanžura]], Section 2 of \emph{On $Sp(2)$ and $Sp(2) \cdot Sp(1)$-structures in 8-dimensional vector bundles}, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (\href{https://www.jstor.org/stable/43737249}{jstor:43737249}) \end{itemize} [[!redirects Spin(8)]] [[!redirects SO8]] [[!redirects Spin8]] \end{document}