\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{SO orientation of elliptic cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{induced_relation_between_cobordism_and_homology}{Induced relation between cobordism and homology}\dotfill \pageref*{induced_relation_between_cobordism_and_homology} \linebreak \noindent\hyperlink{relation_to_the_atiyahbottshapiro_spin_orientation_of_ko}{Relation to the Atiyah-Bott-Shapiro Spin orientation of KO}\dotfill \pageref*{relation_to_the_atiyahbottshapiro_spin_orientation_of_ko} \linebreak \noindent\hyperlink{homotopy_type_of_the_spectrum_}{Homotopy type of the spectrum $Ell$}\dotfill \pageref*{homotopy_type_of_the_spectrum_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Ochanine elliptic genus]] $\Omega^{SO}_\bullet \to M_\bullet = \mathbb{Z}[\tfrac{1}{2}][\delta, \epsilon]$ lifts to a map of [[ring spectra]] \begin{displaymath} M SO \longrightarrow Ell \end{displaymath} (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93}). Here $Ell[\tfrac{1}{6}]$ is equivalently [[tmf0(2)]] (\hyperlink{Behrens05}{Behrens 05}) and as such this lift is analogous to the [[string orientation of tmf]] $M String \to tmf$. If this map of [[ring spectra]] could be shown to be ``highly structured'' in that it preserves [[E-∞ ring]] structure, then it would equivalently be a universal [[orientation in generalized cohomology|orientation]] (see at \href{orientation+in+generalized+cohomology#RelationToGenera}{relation between orientations and genera}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} After inversion of the [[prime number]] 2, the oriented [[cobordism ring]] is a [[polynomial ring]] over $\mathbb{Z}[\tfrac{1}{2}]$ on generators in degrees $4k$ \begin{displaymath} \Omega^{SO}_\bullet[\tfrac{1}{2}] \simeq \mathbb{Z}[\tfrac{1}{2}] [x_4, x_8, x_{12}, \cdots ] \end{displaymath} where $x_4$ is the class of the complex [[projective space]] $\mathbb{C}P^2$ and $x_8$ that of $\mathbb{H}P^2$ and where all [[elliptic genera]] vanish on all the other generators (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, prop. 3.2}). From this one gets that the [[quotient]] by the [[ideal]] generated by these higher elements is \begin{displaymath} \Omega^{SO}_\bullet[\tfrac{1}{2}]/(x_{4(k \geq 3)}) \simeq MF_0(2)_\bullet \coloneqq \mathbb{Z}[\tfrac{1}{2}][\delta, \epsilon] \end{displaymath} where the right hand side here is naturally identified as the ring of those [[modular forms]] for the [[congruence subgroup]] $\Gamma_0(2)$ which have half-integral [[coefficients]] in their $q$-expansion at the [[nodal curve]] (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, theorem 1.5}). Now by a general construction due to (\hyperlink{Baas73}{Baas 73}) this induces a [[generalized homology theory]] \begin{displaymath} \Omega^{SO}_\bullet[\tfrac{1}{2}](-) \end{displaymath} [[Brown representability theorem|represented]] by some [[spectrum]] $Ell$,whose coefficient ring is as above \begin{displaymath} Ell_\bullet \simeq MF_0(2)_\bullet \,. \end{displaymath} By construction, this comes with a quotient map \begin{displaymath} M SO[\tfrac{1}{2}] \longrightarrow Ell \end{displaymath} which is a map of [[ring spectra]] by (\hyperlink{Mironov78}{Mironov 78}). This maplifts the universal [[elliptic genus]] (in that it reproduces it on [[homotopy groups]]) (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, section 4.6, 4.7}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{induced_relation_between_cobordism_and_homology}{}\subsubsection*{{Induced relation between cobordism and homology}}\label{induced_relation_between_cobordism_and_homology} The SO orientation of elliptic cohomology makes it expressible in terms of the [[cobordism cohomology theory]], see at \emph{[[cobordism theory determining homology theory]]} (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, theorem 1.2}). \hypertarget{relation_to_the_atiyahbottshapiro_spin_orientation_of_ko}{}\subsubsection*{{Relation to the Atiyah-Bott-Shapiro Spin orientation of KO}}\label{relation_to_the_atiyahbottshapiro_spin_orientation_of_ko} There are maps of spectra \begin{displaymath} Ell [\epsilon^{-1}] \longrightarrow KO[\tfrac{1}{2}] \end{displaymath} and \begin{displaymath} Ell [(\delta^2- \epsilon)^{-1}] \longrightarrow KO[\tfrac{1}{2}] \end{displaymath} such that postcomposition of the above SO-orientation with reproduces the [[signature genus]] and the [[Atiyah-Bott-Shapiro orientation]] of [[KO]], respective, hence the [[A-hat genus]] (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, prop. 4.9}). Notice that here the second localization correponds again to including the [[nodal curve]]: [[!include moduli stack of curves -- table]] \hypertarget{homotopy_type_of_the_spectrum_}{}\subsubsection*{{Homotopy type of the spectrum $Ell$}}\label{homotopy_type_of_the_spectrum_} After suitable localization the spectrum Ell is a wedge sum of suspensions of the [[Morava E-theory]] $E(2)$ (\hyperlink{Baker97}{Baker 97}). Specifically after [[K(n)-local spectrum|K(2)-localization]] and inversion of 6 it coincides with [[tmf0(2)|TMF0(2)]] \begin{displaymath} L_{K(2)} TMF_0(2) \simeq L_{K(2)}(E(2) \vee \Sigma^8 E(2)) \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include genera and partition functions - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The construction is due to \begin{itemize}% \item [[Peter Landweber]], [[Douglas Ravenel]], [[Robert Stong]], \emph{Periodic cohomology theories defined by elliptic curves}, in [[Haynes Miller]] et. al. (eds.), \emph{The Cech centennial: A conference on homotopy theory}, June 1993, AMS (1995) (\href{http://www.math.sciences.univ-nantes.fr/~hossein/GdT-Elliptique/Landweber-Ravenel-Stong.pdf}{pdf}) \end{itemize} based on general constructions of multiplicative homology theories from cobordism theories due to \begin{itemize}% \item [[Nils Baas]], \emph{On bordism theory of manifolds with singularities}, Math. Scand. 33 (1973), 279--302. \item O. K. Mironov, \emph{Multiplications in cobordism theories with singularities}, and Steenrod-tom Dieck operations\_, Izv. Akad. Nauk SSSR, Ser. Mat. 42 (1978), 789--806; English transl. in Math. USSR Izvestiya 13 (1979), 89--106. \end{itemize} Analysis of $Ell$ is in \begin{itemize}% \item [[Andrew Baker]], The homotopy type of the spectrum representing elliptic cohomology, Proceedings of the American Mathematical Society 107.2 (1989): 537-548. (\href{http://www.maths.gla.ac.uk/~ajb/dvi-ps/homell.pdf}{pdf}) \item [[Andrew Baker]], \emph{On the Adams $E_2$-term for elliptic cohomology}, 1997 (\href{http://www.maths.gla.ac.uk/~ajb/dvi-ps/ell-ext.pdf}{pdf}) \end{itemize} The interpretation of $Ell$ in terms of [[tmf0(2)|TMF0(2)]] is discussed in \begin{itemize}% \item [[Mark Behrens]], \emph{A modular description of the K(2)-local sphere at the prime 3} (\href{http://arxiv.org/abs/math/0507184}{arXiv:math/0507184}) \end{itemize} More is in \begin{itemize}% \item [[Dylan Wilson]], \emph{Orientations and Topological Modular Forms with Level Structure} (\href{http://arxiv.org/abs/1507.05116}{arXiv:1507.05116}) \end{itemize} \end{document}