\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Schur's lemma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{proof}{Proof}\dotfill \pageref*{proof} \linebreak \noindent\hyperlink{InterpretationInCategoricalAlgebra}{Interpretation in categorical algebra}\dotfill \pageref*{InterpretationInCategoricalAlgebra} \linebreak \noindent\hyperlink{GeneralizationsAndVariants}{Generalizations and variants}\dotfill \pageref*{GeneralizationsAndVariants} \linebreak \noindent\hyperlink{for_simple_modules}{For simple modules}\dotfill \pageref*{for_simple_modules} \linebreak \noindent\hyperlink{for_simple_objects_in_an_abelian_category}{For simple objects in an abelian category}\dotfill \pageref*{for_simple_objects_in_an_abelian_category} \linebreak \noindent\hyperlink{for_bridgeland_stable_objects}{For Bridgeland stable objects}\dotfill \pageref*{for_bridgeland_stable_objects} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Schur's lemma is one of the basic facts of [[representation theory]]. It concerns basic properties of the [[hom-sets]] between [[irreducible representations|irreducible]] [[linear representations]] of [[groups]]. The lemma consists of two parts that depend on different assumptions (often not highlighted in the literature). \begin{enumerate}% \item The first statement applies over \emph{every} [[ground field]]: It says that there are no non-[[zero morphism|zero]] [[homomorphisms]] between distinct (i.e. non-[[isomorphism|isomorphic]]) [[irreducible representations]] \item The second statement applies only in the special case that the [[ground field]] is an [[algebraically closed field]] (such as the [[complex numbers]]) and that the [[representations]] are [[finite dimensional vector space|finite-dimensional]]: It says that in this case, moreover the only non-trivial [[endomorphisms]] of an [[irreducible representation]] are multiples of the [[identity morphism]]. \end{enumerate} \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Let $G$ be a [[group]]. In the following \begin{itemize}% \item ``representation'' means \emph{[[linear representation]] of $G$}, linear over some [[ground field]]. \item ``finite dimensional representation'' means that the underlying [[vector space]] is a [[finite-dimensional vector space]]. \end{itemize} An \begin{itemize}% \item \emph{[[irreducible representation]]} is one whose only $G$-[[invariant]] [[subspaces]] are the trivial degenerate cases: the [[zero object|zero]]-subspace and the full space itself. \end{itemize} \begin{prop} \label{}\hypertarget{}{} \textbf{(Schur's lemma)} \begin{enumerate}% \item A [[homomorphism]] $\phi \;\colon\; V\to W$ between [[irreducible representations]], is either the [[zero morphism]] or an [[isomorphism]]. It follows that the [[endomorphism ring]] of an [[irreducible representation]] is a [[division ring]]. \item In the case that the [[ground field]] is an [[algebraically closed field]] of [[characteristic zero]]; [[endomorphisms]] $\phi \;\colon\; V \to V$ of a [[finite-dimensional vector space|finite dimensional]] [[irreducible representations]] $V$ are a multiple $c id$ of the [[identity morphism|identity operator]]. In other words, the nontrivial automorphisms of irreducible representations, \emph{a priori} possible by (1), are ruled out over algebraically closed fields. \end{enumerate} \end{prop} \hypertarget{proof}{}\subsection*{{Proof}}\label{proof} As it goes with very fundamental lemmas, the [[proof]] of Schur's lemma follows by elementary inspection. For the first statement: It is immediate to see that both the [[kernel]] as well as [[image]] of a [[homomorphism]] \begin{displaymath} V \overset{f}{\longrightarrow} W \end{displaymath} of any $G$-[[representations]] are $G$-[[invariant]] [[subspaces]]. But by the very definition of [[irreducible representation|irreducibility]], the only such subspaces of $V$ and $W$ are the degenerate ones: their zero subspaces and the full spaces themselves. Now if the [[kernel]] is all of $V$ or the [[image]] is [[zero object|zero]], $f$ is the [[zero morphism]]. The only case left is that the [[kernel]] is [[zero object|zero]] \emph{and} the [[image]] is all of $W$, but this means that $f$ is [[injective map|injective]] and [[surjective map|surjective]] and is hence an [[isomorphism]]. For the second statement: Now we use that over an [[algebraically closed field]] $k$ of every linear [[endomorphism]] of a [[finite dimensional vector space]] has an [[eigenvalue]] $c \in k$ (which is, ultimately, due to the [[fundamental theorem of algebra]] for [[algebraically closed fields]]). Now with $f$ also the linear combination \begin{displaymath} (f - c \mathrm{id}) \;\colon\; V \longrightarrow V \end{displaymath} is a [[homomorphism]] of $G$-[[representations]]. But then, by the first part, this must be an [[isomorphism]] or [[zero morphism|zero]]. It is not an [[isomorphism]], by construction, since now the [[eigenvectors]] with [[eigenvalue]] $c$ are in the [[kernel]]. Therefore the linear combination it must be [[zero morphism|zero]] \begin{displaymath} f - c id = 0 \end{displaymath} and hence \begin{displaymath} f = c id \end{displaymath} is a multiple of the identity. \hypertarget{InterpretationInCategoricalAlgebra}{}\subsection*{{Interpretation in categorical algebra}}\label{InterpretationInCategoricalAlgebra} The statement of \emph{Schur's lemma} is particularly suggestive in the language of [[categorical algebra]]. Here it says that [[irreducible representations]] form a [[categorification|categorified]] \emph{[[orthogonal basis]]} for the [[2-Hilbert space]] of [[finite-dimensional vector space|finite-dimensional]] [[representations]], and even an \emph{[[orthonormal basis]]} if the [[ground field]] is [[algebraically closed field|algebraically closed]]. After [[decategorification]] this becomes equivalently the statement that the [[isomorphism classes]] of [[irreducible representations]] form an \emph{[[orthogonal basis]]} for the [[representation ring]], and even an \emph{[[orthonormal basis]]} if the [[ground field]] is [[algebraically closed field|algebraically closed]]. For more on this perspective see also at \emph{[[Gram-Schmidt process]]} the section \emph{\href{Gram-Schmidt+process#CategorifiedGramSchmidtProcess}{Categorified Gram-Schmidt process}}. $\,$ We now explain this perspective of in more detail: $\,$ Notice that the [[hom-sets]] in a [[category of representations]] $G Rep$ are canonically [[vector spaces]]: given any two [[homomorphisms]] $f,g \;\colon\; V \to W$ of $G$-[[representations]], also the (value-wise) [[linear combination]] $c_1 f + c_2 g \;\colon\; V \to W$ is a $G$-homomorphism. ($G Rep$ is canonically [[enriched category|enriched]] over [[Vect]].) Now it makes sense to regard this [[vector space]]-valued [[hom-functor]] on $G Rep$ as analogous \begin{displaymath} hom_G(-,-) \;\colon\; G Rep^{op} \times G Rep \longrightarrow Vect \end{displaymath} as a [[categorification|categorified]] [[inner product]] (see at \emph{[[2-Hilbert space]]} for more on this). This is a useful perspective even after [[decategorification]]: For $V, W \in G Rep^{fin}$ two [[finite-dimensional vector space|finite-dimensional]] [[representations]], write \begin{displaymath} \langle V,W\rangle \;\coloneqq\; dim\big( hom_G(-,-) \big) \;\in\; \mathbb{N} \end{displaymath} for the [[dimension]] of the vector space of homomorphism between them (e.g. \hyperlink{tomDieck09}{tom Dieck 09, p. 29}). This construction only depends on the [[isomorphism classes]] of $V$ and $W$, and hence descends to a [[function]] \begin{displaymath} \langle -,-\rangle \;\colon\; G Rep^{fin}_{/\sim} \times G Rep^{fin}_{/\sim} \longrightarrow \mathbb{N} \end{displaymath} on [[sets]] of [[isomorphism classes]]. In fact, under [[direct sum]] and [[tensor product of representations]], $G Rep^{fin}_{/\sim}$ is a [[rig]], and this pairing is [[linear map|linear]] with respect to the underlying [[commutative monoid|additive monoid]] structure: \begin{displaymath} \left\langle V_1 \oplus V_2 \,,\, W \right\rangle \;=\; \left\langle V_1 \,,\, W \right\rangle + \left\langle V_2 \,,\, W \right\rangle \phantom{AA} \text{and} \phantom{AA} \left\langle V \,,\, W_1 \oplus W_w \right\rangle \;=\; \left\langle V \,,\, W_1 \right\rangle + \left\langle V \,,\, W_2 \right\rangle \end{displaymath} (This is, ultimately, due to the [[universal property]] of [[direct sum]] as a [[biproduct]].) To further strengthen the emerging picture, we may consider the [[group completion]] of the [[commutative monoid]] $G Rep^{fin}_{/\sim}$ by passing to its [[Grothendieck group]], in fact its [[Grothendieck ring]] if we remember also the [[tensor product of representations]]. This [[commutative ring]] is called the [[representation ring]] \begin{displaymath} R(G) \;\coloneqq\; K\left( G Rep^{fin}_{/\sim} \right) \end{displaymath} of $G$. By the evident $\mathbb{Z}$-linear extension, the above pairing gives an actual symmetric $\mathbb{Z}$-[[bilinear map|bilinear]] [[inner product]] on $R(G)$: \begin{equation} \langle -,- \rangle \;\colon\; R(G) \times R(G) \longrightarrow \mathbb{Z} \label{DecategorifiedInnterProduct}\end{equation} Now $R(G)$ is a [[free abelian group]] whose canonical [[generators and relations|generators]] are nothing but the [[isomorphism classes]] $V_i$ of the [[finite-dimensional vector space|finite-dimensional]] [[irreducible representations]]: \begin{displaymath} R(G) \;\simeq_{\mathbb{Z}}\; \mathbb{Z}\big[ \{V_i\}_i \big] \,. \end{displaymath} In summary, in the language of [[linear algebra]], the [[irreducible representations]] $[V_i]$ constitute a canonical \emph{[[linear basis]]} of the [[representation ring]]. In terms of this language, \textbf{Schur's lemma} becomes the following statement: The canonical [[linear basis]] of the [[representation ring]] given by the [[irreducible representations]] is \begin{enumerate}% \item generally: an \emph{[[orthogonal basis|ortho-gonal basis]]}; \item even an \emph{[[orthonormal basis|ortho-normal basis]]} if the [[ground field]] is [[algebraically closed field|algebraically closed field]] \end{enumerate} with respect to the canonical [[decategorification|decategorified]] [[inner product]] from \eqref{DecategorifiedInnterProduct}. \hypertarget{GeneralizationsAndVariants}{}\subsection*{{Generalizations and variants}}\label{GeneralizationsAndVariants} \hypertarget{for_simple_modules}{}\subsubsection*{{For simple modules}}\label{for_simple_modules} Part (1) is essentially [[category theory|category-theoretic]] and can be generalized in many ways, for example, by replacing the [[group]] $G$ by some $k$-[[associative algebra|algebra]] and taking the representations compatible with the action of $k$. \hypertarget{for_simple_objects_in_an_abelian_category}{}\subsubsection*{{For simple objects in an abelian category}}\label{for_simple_objects_in_an_abelian_category} More generally, given an [[abelian category]], part (1) of Schur's lemma applies to the [[simple objects]] (see \href{simple+object#SchurLemma}{there}) and the [[endomorphism ring]] of a [[simple object]] is a [[division ring]]. For (2), if the [[endomorphism rings]] of all objects in an [[abelian category]] are [[finite-dimensional vector space|finite-dimensional]] over an [[algebraically closed field]] $k$ (as is the case for group representations), then the endomorphism ring of a simple object is $k$ itself. \hypertarget{for_bridgeland_stable_objects}{}\subsubsection*{{For Bridgeland stable objects}}\label{for_bridgeland_stable_objects} The statement of Schur's lemma applies also to objects which are stable with respect to a [[Bridgeland stability condition]], see \href{Bridgeland+stability+condition#SchurLemma}{there} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item [[Tammo tom Dieck]], (1.1.2) in \emph{Representation theory}, 2009 (\href{http://www.uni-math.gwdg.de/tammo/rep.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Schur%27s_lemma}{Schur's lemma}} \end{itemize} [[!redirects Schur's lemmas]] [[!redirects Schur lemma]] [[!redirects Schur lemmas]] \end{document}