\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Schwartz space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{harmonic_analysis}{}\paragraph*{{Harmonic analysis}}\label{harmonic_analysis} [[!include harmonic analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[functional analysis]], \begin{enumerate}% \item \emph{a} [[Schwartz space]] (\hyperlink{Terzioglu69}{Terzioglu 69}, \hyperlink{KrieglMichor97}{Kriegl-Michor 97, below 52.24}) is a [[locally convex topological vector space]] $E$ with the property that whenever $U$ is an [[absolutely convex]] neighbourhood of $0$ then it contains another, say $V$, such that $U$ maps to a [[precompact set]] in the [[normed vector space]] $E_V$. \item \emph{the} Schwartz space of an [[open subset]] of [[Euclidean space]] is the space of [[functions with rapidly decreasing partial derivatives]] (def. \ref{RapidlyDecreasingFunction} below). On this space the operation of [[Fourier transform]] is a linear automorphism (prop. \ref{FourierTransformIsIsomorphismOnSchwartzSpace} below). The [[continuous linear functionals]] on this space are the [[tempered distributions]]. \end{enumerate} The Schwartz spaces in the second sense are examples of the Schwartz spaces in the first sense. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{RapidlyDecreasingFunction}\hypertarget{RapidlyDecreasingFunction}{} \textbf{([[functions with rapidly decreasing partial derivatives]])} For $n \in \mathbb{N}$, a [[smooth function]] $f \colon \mathbb{R}^n \to \mathbb{R}$ on the [[Euclidean space]] $\mathbb{R}^n$ has \emph{[[rapidly decreasing function|rapidly decreasing]] [[partial derivatives]]} if the [[absolute value]] of the product of any [[partial derivative]] $\partial_\beta f$ of the function with any [[polynomial]] function is a [[bounded function]]: \begin{displaymath} \underset{\alpha, \beta \in \mathbb{N}^n}{\forall} \left( \underset{x \in \mathbb{R}^n}{sup} {\Vert x^\alpha \partial_{\beta} f(x) \Vert} \lt K_{\alpha, \beta} \right) \end{displaymath} for some choices of positive constants $K_{\alpha, \beta}$. \end{defn} (e.g. \hyperlink{Hoermander90}{H\"o{}rmander 90, def. 7.1.2}) \begin{defn} \label{SchwartzSpaceOfFunctionsWithRapidlyDecreasingDerivatives}\hypertarget{SchwartzSpaceOfFunctionsWithRapidlyDecreasingDerivatives}{} \textbf{(Schwartz space of [[functions with rapidly decreasing partial derivatives]])} For $n \in \mathbb{N}$ the \emph{Schwartz space} $\mathcal{S}(\mathbb{R}^n)$ is the [[topological vector space]] whose \begin{itemize}% \item underlying [[real vector space]] is the subspace of the space $C^\infty(\mathbb{R}^n)$ of [[smooth functions]] (with pointwise addition and scalar multiplication) on the [[functions with rapidly decreasing partial derivatives]] (def. \ref{RapidlyDecreasingFunction}); \item whose [[topological space|topology]] is that induced b the [[semi-norms]] given by $p_{\alpha,\beta}(f) \coloneqq {\Vert x^\alpha \partial_{\beta} (f)(x) \Vert}$ is called the \emph{Schwartz space} $\mathcal{S}(\mathbb{R}^n)$. \end{itemize} \end{defn} (e.g. \hyperlink{Hoermander90}{H\"o{}rmander 90, def. 7.1.2}) \begin{prop} \label{SchwartSpaceOfFunctionsIsFrechetSpace}\hypertarget{SchwartSpaceOfFunctionsIsFrechetSpace}{} \textbf{(the Schwartz space is a [[Fréchet space]])} The Schwartz space $\mathcal{S}$ of [[functions with rapidly decreasing partial derivatives]] (def. \ref{SchwartzSpaceOfFunctionsWithRapidlyDecreasingDerivatives}) is a [[Fréchet space]]. \end{prop} (e.g. p. 2 here: \href{https://www.math.ucdavis.edu/~hunter/m218a_09/ch5A.pdf}{pdf}) \begin{defn} \label{TemperedDistribution}\hypertarget{TemperedDistribution}{} \textbf{([[tempered distributions]])} A \emph{[[tempered distribution]]} on $\mathbb{R}^n$ is a [[continuous linear functional]] on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ (def. \ref{SchwartzSpaceOfFunctionsWithRapidlyDecreasingDerivatives}). \end{defn} (e.g. \hyperlink{Hoermander90}{H\"o{}rmander 90, def. 7.1.7}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{FourierTransformIsIsomorphismOnSchwartzSpace}\hypertarget{FourierTransformIsIsomorphismOnSchwartzSpace}{} \textbf{([[Fourier transform]] is linear automorphism of Schwartz space)} For $n \in \mathbb{N}$ the operation of [[Fourier transform]] $f \mapsto \hat f$ is well defined on all smooth functions on $\mathbb{R}^n$ with rapidly decreasing derivatives (def. \ref{RapidlyDecreasingFunction}) and indeed constitutes a [[linear isomorphism]] from the Schwartz space (def. \ref{SchwartzSpaceOfFunctionsWithRapidlyDecreasingDerivatives}) to itself: \begin{displaymath} \widehat {(-)} \;\colon\; \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n) \end{displaymath} \end{prop} (e.g. \hyperlink{Hoermander90}{H\"o{}rmander 90, lemma 7.1.3}, \hyperlink{Melrose03}{Melrose 03, theorem 1.3}) \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Schwartz-Bruhat function]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named by [[Alexander Grothendieck]] after [[Laurent Schwartz]] (according to \hyperlink{Terzioglu69}{Terzioglu 69}). The general concept of Schwartz spaces appears in \begin{itemize}% \item Horvath, 1966, p277 \item T. Terzioglu, \emph{On Schwartz spaces}, Mathematische Annalen September 1969, Volume 182, Issue 3, pp 236--242 (\href{https://link.springer.com/article/10.1007/BF01350326}{web}) \item Jarchow, 1981, 10.4.3, p202 \item [[Andreas Kriegl]], [[Peter Michor]], on p. 585 after Result 52.24 of \emph{[[The Convenient Setting of Global Analysis]]}, 1997 \end{itemize} Specifically the Schwartz spaces of [[functions with rapidly decreasing partial derivatives]] are discussed for instance in \begin{itemize}% \item [[Lars Hörmander]], section 7.1 of \emph{The analysis of linear partial differential operators}, vol. I, Springer 1983, 1990 \item [[Richard Melrose]], chapter 1 of \emph{Introduction to microlocal analysis}, 2003 (\href{http://www-math.mit.edu/~rbm/iml90.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Schwartz_space}{Schwartz space}} \end{itemize} [[!redirects smooth function with rapidly decreasing derivatives]] [[!redirects smooth functions with rapidly decreasing derivatives]] [[!redirects function with rapidly decreasing derivatives]] [[!redirects functions with rapidly decreasing derivatives]] [[!redirects rapidly decreasing derivatives]] category: functional analysis \end{document}