\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Segal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{operadic_version}{Operadic version}\dotfill \pageref*{operadic_version} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{inclusion_of_ordinary_categories}{Inclusion of ordinary categories}\dotfill \pageref*{inclusion_of_ordinary_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Segal category} is one of the models for that of \emph{[[(∞,1)-category]]}, given by regarding an $(\infty,1)$-category as an [[∞Grpd]]-[[enriched (∞,1)-category]]. So the notion can be understood as modelling the notion of an [[sSet]]-[[enriched category|enrichment]] \emph{up to [[coherence|coherent]] [[homotopy]]}, i.e. a \emph{weak} enrichment. As such it is closely related to the notion of [[complete Segal space]], which models the notion of an [[internal category in an (∞,1)-category|internal category]] in [[sSet]]. Indeed, Segal categories may be considered with enrichment not just over [[sSet]], but over other suitable [[model categories]]. In particular, an iterated enrichment over itself gives rise to the notion of \emph{[[Segal n-category]]} which is a model for \emph{[[(∞,n)-categories]]}. Since the major difference between ([[small category|small]]) $\mathcal{V}$-[[enriched categories]] and $\mathcal{V}$-[[internal categories]] is that in the first case the [[objects]] (as opposed to all the [[hom objects]]) form an ordinary [[set]], while in the second these form an object of $\mathcal{V}$, too, accordingly a the definition of \emph{Segal category} is like that of \emph{([[complete Segal space|complete]]) [[Segal space]]}, only that the simplicial set of objects is required to be an ordinary set (a [[discrete object|discrete]] simplicial set). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{def} \label{}\hypertarget{}{} A \textbf{Segal category} is \begin{itemize}% \item a [[simplicial object|simplicial]] [[simplicial set]] ($\simeq$ [[bisimplicial set]]) $X \in [\Delta^{op}, sSet]$, where we call $X_0$ the \emph{simplicial set of [[objects]]}, $X_1$ the \emph{simplicial set of [[morphisms]]}; and $X_k$ for $k \geq 2$ the \emph{simplicial set of sequences of composable morphisms of length $k$}; \item such that $X_0$ is a [[discrete object|discrete]] (= constant) simplicial set; \item and such that the [[Segal maps]] \begin{displaymath} X^{Sp[k] \hookrightarrow \Delta[k]} : X_k \stackrel{\simeq}{\to} X_1 \times_{X_0} \cdots \times_{X_0} X_1 \;\;(k factors) \end{displaymath} induced by the [[spine]] inclusions $Sp[k] \hookrightarrow \Delta[k]$ are [[model structure on simplicial sets|weak equivalences of simplicial sets]] for $k \geq 2$. \end{itemize} \end{def} \begin{remark} \label{}\hypertarget{}{} There is \emph{no} condition that a Segal category be [[fibrant object|fibrant]] with respect to the [[Reedy model structure]] on bisimplicial sets. \end{remark} \begin{remark} \label{}\hypertarget{}{} For $X$ a Segal category, the [[fiber product]] simplicial set $X_1 \times_{X_0} X_1$ is manifestly the space of pairs of composable 1-[[morphism]]s in $X$, and the [[weak equivalence]] \begin{displaymath} (d_0,d_2) : X_2 \stackrel{\simeq}{\to} X_1 \times_{X_0} X_1 \end{displaymath} given by the above definition together with the remaining face map $d_1 : X_2 \to X_1$ constitutes an [[∞-anafunctor]] \begin{displaymath} \circ : X_1 \times_{X_0} X_1 ⇸ X_1 \end{displaymath} given by the [[span]] \begin{displaymath} \itexarray{ X_2 &\stackrel{d_1}{\to}& X_1 \\ {}^{\mathllap{\simeq}}\downarrow \\ X_1 \times_{X_0} X_1 } \,. \end{displaymath} This encodes the [[composition]] operation in the Segal category $X$. Accordingly, the analogous spans out of $X_k$ for $k \geq 3$ encode the [[associativity]] of this composition as well as all its [[coherence|coherences]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} The category of [[bisimplicial sets]] carries a [[model category]] structure whose [[fibrant objects]] are the [[Reedy model structure|Reedy fibrant]] Segal categories. This \emph{[[model structure for Segal categories]]} is a [[presentable (∞,1)-category|presentation]] of the [[(∞,1)-category of (∞,1)-categories]]. \hypertarget{operadic_version}{}\subsubsection*{{Operadic version}}\label{operadic_version} The [[operad|operadic]] generalization of Segal category is that of \emph{[[Segal operad]]}. Segal categories are precisely those Segal operads whose only [[inhabited set|inhabited]] operations-spaces are those of unary operations. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{inclusion_of_ordinary_categories}{}\subsubsection*{{Inclusion of ordinary categories}}\label{inclusion_of_ordinary_categories} Let $C$ be an ordinary [[small category]] and write $N(C) \in sSet$ for its [[nerve]]. Regard this as a bisimplicial set under the inclusion $sSet \simeq [\Delta^{op}, Set] \hookrightarrow [\Delta^{op}, sSet]$. Then $N(C)$ is a Segal category. Each simplicial set $N(C)_k$ is discrete, for all $k \in \mathbb{N}$, and all the morphisms \begin{displaymath} N(C)_k \to Mor(C) \times_{Obj(C)} \cdots \times_{Obj(C)} Mor(C) \end{displaymath} are in fact [[isomorphisms]] / [[bijections]] of sets. This property of the [[nerve]] of an ordinary category goes by the name \emph{Segal condition} and is what gave Segal categories its name. One may also form the $n$-fold [[comma object]]-fiber product of a choice of base points $\pi_0(C) \to C$ with itself. This yields a Segal category incarnation of $C$ where in degree 1 we have the [[groupoid]] [[core]] of the [[arrow category]] of $C$. For more on this see at \emph{\href{Segal+space#ConstructionFromACategory}{Segal space -- Examples - From a category}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Gamma space]] \item [[Segal operad]] \item [[table - models for (infinity,1)-operads]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The idea of Segal categories goes back (implicitly) to \begin{itemize}% \item [[Graeme Segal]], \emph{Categories and cohomology theories}, Topology 13 (1974), 293-312. \end{itemize} They were named \emph{Segal categories} in \begin{itemize}% \item [[William Dwyer]], [[Daniel Kan]], [[Jeff Smith]], \emph{Homotopy-commutative diagrams and their realizations}. J. P. A. A. 57 (1989), 5-24. \end{itemize} An overview is on pages 164 to 169 of \begin{itemize}% \item [[André Joyal]], \emph{The theory of Quasi-Categories and its Applications}, notes from a lecture at \href{http://www.crm.cat/HigherCategories/}{Simplicial Methods in Higher Categories} (\href{http://www.crm.cat/HigherCategories/hc2.pdf}{pdf}) \end{itemize} A discussion with emphasis on the comparison of the various [[model category]] structures is in \begin{itemize}% \item [[Julia Bergner]], \emph{A survey of $(\infty, 1)$-categories} (\href{http://arxiv.org/abs/math.AT/0610239}{arXiv:0610239}) \end{itemize} The generalization to [[Segal n-categories]] is discussed in section 2 of \begin{itemize}% \item [[André Hirschowitz]], [[Carlos Simpson]], \emph{Descente pour les $n$-champs (Descent for $n$-stacks)} (\href{http://arxiv.org/abs/math/9807049}{arXiv:9807049}) \end{itemize} In the more general context of [[enriched (∞,1)-categories]], this is discussed in \begin{itemize}% \item [[Carlos Simpson]], \emph{[[Homotopy Theory of Higher Categories]]} (\href{http://arxiv.org/abs/1001.4071}{arXiv:1001.4071}) \end{itemize} and in section 2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{(Infinity,2)-Categories and the Goodwillie Calculus I} (\href{http://arxiv.org/abs/0905.0462}{arXiv:0905.0462}) \end{itemize} [[!redirects Segal categories]] [[!redirects Segal groupoid]] [[!redirects Segal groupoids]] \end{document}