\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Segal condition} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForSimplicialObjects}{For simplicial objects}\dotfill \pageref*{ForSimplicialObjects} \linebreak \noindent\hyperlink{ForCellularObjects}{For cellular objects}\dotfill \pageref*{ForCellularObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_of_nerves_of_higher_categories}{Characterization of nerves of (higher) categories}\dotfill \pageref*{characterization_of_nerves_of_higher_categories} \linebreak \noindent\hyperlink{of_simplicial_nerves_of_small_categories}{Of simplicial nerves of small categories}\dotfill \pageref*{of_simplicial_nerves_of_small_categories} \linebreak \noindent\hyperlink{of_complete_segal_spaces}{Of complete Segal spaces}\dotfill \pageref*{of_complete_segal_spaces} \linebreak \noindent\hyperlink{of_cellular_nerves_of_strict_categories}{Of cellular nerves of strict $\omega$-categories}\dotfill \pageref*{of_cellular_nerves_of_strict_categories} \linebreak \noindent\hyperlink{of_cellular_models_of_categories}{Of cellular models of $(\infty,n)$-categories}\dotfill \pageref*{of_cellular_models_of_categories} \linebreak \noindent\hyperlink{InTermsOfSheafConditions}{In terms of sheaf conditions}\dotfill \pageref*{InTermsOfSheafConditions} \linebreak \noindent\hyperlink{InTermsOfSheafConditionForSimplicialObjects}{For simplicial objects and category objects}\dotfill \pageref*{InTermsOfSheafConditionForSimplicialObjects} \linebreak \noindent\hyperlink{InTermsOfPullBackOfCatOfSheavesForCellularObjects}{For cellular objects and $\omega$-category objects}\dotfill \pageref*{InTermsOfPullBackOfCatOfSheavesForCellularObjects} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Segal condition} is a condition on a [[simplicial object]] $X_\bullet \in \mathcal{C}^{\Delta^{op}}$ which says that each component $X_{n \geq 2} \in \mathcal{C}$ is obtained from $X_1 \stackrel{\overset{\partial_0}{\to}}{\underset{\partial_1}{\to}} X_0$ by the $n$-fold [[fiber product]] of $X_1$ over $X_0$ which ``glues'' $n$ copies of $X_1$ end-to-end. Hence if one thinks of $X_0$ as a collection of [[objects]] and of $X_1$ as a collection of [[morphisms]], then $X_\bullet$ satisfies the Segal condition precisely if each $X_{n \geq 2}$ can be interpreted as the collection of sequences of [[composition|composable]] morphisms of length $n$. The precise formulation is below in \emph{\hyperlink{ForSimplicialObjects}{Definition -- For simplicial objects}}. Accordingly, if $\mathcal{C} =$ [[Set]] is the category of [[sets]], then the Segal condition characterizes precisely those [[simplicial sets]] which are the [[nerve]] of a [[small category]], theorem \ref{NerveTheorem} below. This is the observation due to (\hyperlink{Segal}{Segal 1968}), following [[Grothendieck]], which today gives the Segal condition its name. Sometimes this statement also called the \emph{nerve theorem} (no relation to what is called \emph{[[nerve theorem]]} in [[homotopy theory]]). It is useful to decompose this statement into its constituents as follows: A [[small category]] $C$ may be thought of as a [[directed graph]] $U(C)$ equipped with a [[unit law|unital]] [[associativity|associative]] [[composition]] operation. This corresponds to a sequence of inclusions of [[sites]] \begin{displaymath} (1 \stackrel{\overset{d_0}{\leftarrow}}{\underset{d_1}{\leftarrow}} 0) \hookrightarrow \Delta_0 \to \Delta \end{displaymath} into the [[simplex category]], where $\Delta_0$ is the category of finite non-empty directed linear graphs: \begin{itemize}% \item a [[directed graph]] is equivalently a [[presheaf]] on $(1 \stackrel{\overset{d_0}{\leftarrow}}{\underset{d_1}{\leftarrow}} 0)$; \item a [[presheaf]] on $\Delta$, hence a [[simplicial set]] encodes via its face and degeneracy maps a kind of associative and unital composition -- but not necessarily ``of composable morphisms'' if $X_{n\geq 2}$ is not given in the above fashion. \end{itemize} In terms of this we can say that equipping a directed graph with the structure of a category is equivalent to asking for its pushforward along $(1 \stackrel{\overset{d_0}{\leftarrow}}{\underset{d_1}{\leftarrow}} 0) \hookrightarrow \Delta_0$ (which encodes all the collections of sequences of composable edges) to be equipped with a lift to a simplicial object through the pullback along $\Delta_0 \to \Delta$. Conversely, the simplicial objects obtained as such lifts are precisely the simplicial objects that satisfy the Segal condition. Formulated in this way one sees that the Segal condition has a large variety of generalizations to structures with richer kinds of composition operations, such as [[globular operads]]. This is made precise below in \emph{\hyperlink{ForCellularObjects}{Definition -- For cellular objects}}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ForSimplicialObjects}{}\subsubsection*{{For simplicial objects}}\label{ForSimplicialObjects} Let $\mathcal{C}$ be a [[category]] with [[pullbacks]]. \begin{defn} \label{}\hypertarget{}{} A [[simplicial object]] \begin{displaymath} X : \Delta^{op} \to \mathcal{C} \end{displaymath} is said to satisfy the \textbf{Segal condition} if it sends the [[colimits]] in the [[simplex category]] to [[limits]], hence if the [[Segal maps]] exhibit [[equivalences]] \begin{displaymath} X_n \stackrel{\simeq}{\longrightarrow} \underbrace{ X_1 \times_{X_0} \cdots \times_{X_0} X_1 }_{n\; factors} \end{displaymath} for all $n \in \mathbb{N}$. \end{defn} More in detail: \begin{defn} \label{SegalCones}\hypertarget{SegalCones}{} For all $n \in \mathbb{N}$, consider $\Delta[n]$ naturally as a [[cocone]] in the [[simplex category]] under the [[diagram]] \begin{displaymath} \itexarray{ \Delta[0] && && \Delta[0] && && \Delta[0] &&& \cdots \\ & {}_{\mathllap{d_1}}\searrow && {}^{\mathllap{d_0}}\swarrow && \searrow^{\mathrlap{d_1}} && {}_{d_0}\swarrow && \cdots \\ && \Delta[1] &&&& \Delta[1] && \cdots } \end{displaymath} with $n$ copies of $\Delta[1]$ at the bottom, such that the cocone injection of the $k$th copy is $\Delta[1] \simeq (k-1,k) \hookrightarrow (0,1,2, \cdots, n) \simeq \Delta[n]$. A [[simplicial object]] $X \colon \Delta^{op} \to \mathcal{C}$ satisfies the \textbf{Segal conditions} if it sends these cocones to [[limit]] [[cones]] in $\mathcal{C}$. \end{defn} \begin{remark} \label{InfinitySegalCones}\hypertarget{InfinitySegalCones}{} This definition immediately generalizes to [[(∞,1)-category theory]] where $\mathcal{C}$ is an [[(∞,1)-category]] and $X$ is a [[simplicial object in an (∞,1)-category]]. Then for $X$ to satisfy the Segal conditons means that it sends the cocones of def. \ref{SegalCones} to [[(∞,1)-limit]] cones in $\mathcal{C}$. Such a simplicial object is also called a \textbf{[[pre-category object in an (∞,1)-category]]} in $\mathcal{C}$. \end{remark} \hypertarget{ForCellularObjects}{}\subsubsection*{{For cellular objects}}\label{ForCellularObjects} A \emph{[[globular theory]]} is a [[wide subcategory]] inclusion \begin{displaymath} i_A \colon \Theta_0 \to \Theta_A \end{displaymath} of the [[globular site]] $\Theta_0$. There is an [[equivalence of categories]] \begin{displaymath} \omega Grph \simeq Sh(\Theta_0) \,. \end{displaymath} of [[∞-graphs]] and sheaves on the [[globular site]]. In particular for $\Theta_A = \Theta$ the [[cell category]] ([[Theta category]]) a [[presheaf]] on $\Theta$ is a [[cellular object]]. The \textbf{Segal condition} on a cellular object $X \colon \Theta^{op} \to \mathcal{C}$ is that the restriction $i^* X \colon \Theta_0^{op} \to \Theta^{op} \to \mathcal{C}$ to the [[cellular site]] is a [[sheaf]] there. The cellular objects that satisfy the Segal condition are precisely the [[∞-category]] objects (\hyperlink{Berger}{Berger}). The cellular spaces/ cellular simplicial sets/cellular [[∞-groupoids]] that satisfy the Segal condition as a [[weak homotopy equivalence]]/ [[equivalence of ∞-groupoids]] is a \emph{[[Theta}n-space]]\_ an [[(∞,n)-category]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_of_nerves_of_higher_categories}{}\subsubsection*{{Characterization of nerves of (higher) categories}}\label{characterization_of_nerves_of_higher_categories} \hypertarget{of_simplicial_nerves_of_small_categories}{}\paragraph*{{Of simplicial nerves of small categories}}\label{of_simplicial_nerves_of_small_categories} The archetypical role of the Segal condition is to make the following statement true. \begin{theorem} \label{NerveTheorem}\hypertarget{NerveTheorem}{} \textbf{(nerve theorem)} A [[simplicial set]] is the [[nerve]] of a [[small category]] precisely if it satsfies the Segal conditions. \end{theorem} This is due to (\hyperlink{Segal}{Segal 1968}), following [[Grothendieck]]. \begin{remark} \label{}\hypertarget{}{} There is an entirely unrelated theorem in [[homotopy theory]] also often called ``the'' \emph{[[nerve theorem]]}. See there for more. Not to be confused with the discussion here. \end{remark} \hypertarget{of_complete_segal_spaces}{}\paragraph*{{Of complete Segal spaces}}\label{of_complete_segal_spaces} By refining the above result from sets to $\infty$-groupoids, one obtains the [[pre-category object in an (infinity,1)-category]]. \hypertarget{of_cellular_nerves_of_strict_categories}{}\paragraph*{{Of cellular nerves of strict $\omega$-categories}}\label{of_cellular_nerves_of_strict_categories} Similarly, a [[cellular set]] is the cellular nerve of a [[strict omega-category]] precisely if it satisfies the cellular Segal condition. (\hyperlink{Berger}{Berger}). \hypertarget{of_cellular_models_of_categories}{}\paragraph*{{Of cellular models of $(\infty,n)$-categories}}\label{of_cellular_models_of_categories} See at \emph{[[Theta-space]]}. \hypertarget{InTermsOfSheafConditions}{}\subsubsection*{{In terms of sheaf conditions}}\label{InTermsOfSheafConditions} We discuss an equivalent formulation of the Segal condition in terms of notions in [[topos theory]]/[[(∞,1)-topos theory]]. This perspective for instance lends itself more to a formulation of Segal conditions in terms of the [[internal language]] of toposes. \hypertarget{InTermsOfSheafConditionForSimplicialObjects}{}\paragraph*{{For simplicial objects and category objects}}\label{InTermsOfSheafConditionForSimplicialObjects} We characterize below in prop. \ref{CatAsPullback} the category of categories as the pullback of the [[topos]] of [[simplicial set]] along the inclusion of the topos of graphs into that of presheaves on finite linear graphs. First we state some preliminaries. \begin{remark} \label{}\hypertarget{}{} The condition in def. \ref{SegalCones} superficially looks like a [[sheaf]] condition for [[coverings]] of $\Delta[n]$ by $n$ subsequent copies of $\Delta[1]$. However, these coverings do \emph{not} form a [[coverage]] on the [[simplex category]] $\Delta$: the refinement-of-covers-axiom is not satisfied: For instance for $d_1 \colon \Delta[1] \to \Delta[2]$ the map that sends the single edge of $\Delta[1]$ to the composite edge in $\Delta[2]$ there is no way to ``pull back'' the cover \begin{displaymath} \{\Delta[1] \coprod \Delta[1] \stackrel{((0,1),(1,2))}{\to} \Delta[2]\} \end{displaymath} along this morphism, not even in the weak sense of \emph{[[coverage]]}. However, as this example also makes clear, the problem is precisely only with the morphisms in $\Delta$ that are no injective on generating edges. \end{remark} Therefore consider instead the following: \begin{defn} \label{FiniteLinearGraphsInAllGraphs}\hypertarget{FiniteLinearGraphsInAllGraphs}{} Let \begin{displaymath} j \colon \Delta_0 \hookrightarrow Graph \end{displaymath} be the [[full subcategory]] of that of [[directed graphs]] on the linear graphs $\{0 \to 1 \to \cdots \to n\}$ for $n \in \mathbb{N}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Morphisms in $\Delta_0$ have to send elementary edges to elementary edges. So there are \begin{itemize}% \item precisely $n$ morphisms $\Delta_0[1] \to \Delta_0[n]$ \item precisely $n$ morphisms $\Delta_0[2] \to \Delta_0[n+1]$ \item precisely $n$ morphisms $\Delta_0[3] \to \Delta_0[n+2]$ \item etc. \end{itemize} \end{remark} \begin{defn} \label{ParallelMorphismCategory}\hypertarget{ParallelMorphismCategory}{} Write \begin{displaymath} i \colon (1 \stackrel{\leftarrow}{\leftarrow} 0) \hookrightarrow \Delta_0 \end{displaymath} for the [[full subcategory]] on the linear graphs with no edge and with one edge. \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[category]] of [[directed graphs]] is [[equivalence of categories|equivalently]] the [[category of presheaves]] over $(1 \stackrel{\leftarrow}{\leftarrow} 0)$, def. \ref{ParallelMorphismCategory}: \begin{displaymath} Graph(\mathcal{C}) \simeq PSh((1 \Leftarrow 0), \mathcal{C}) = \mathcal{C}^{(1 \Rightarrow 0)} \,. \end{displaymath} \end{prop} \begin{prop} \label{AdjointTripleFromGraphs}\hypertarget{AdjointTripleFromGraphs}{} Write \begin{displaymath} (i_! \dashv i^* \dashv i_*) \colon \mathcal{C}^{1 \Rightarrow 0} \stackrel{\overset{i_!}{\to}}{\stackrel{\overset{i^*}{\leftarrow}}{\underset{i_*}{\to}}} \mathcal{C}^{\Delta_0^{op}} \end{displaymath} for the [[adjoint triple]] induced on [[categories of presheaves]] by the inclusion $i$ of def. \ref{ParallelMorphismCategory}: $i^*$ is given by precomposition with $i$, $i_!$ is left and $i_*$ is right [[Kan extension]] along $i$. \end{prop} \begin{prop} \label{NerveOfGraph}\hypertarget{NerveOfGraph}{} The functor $i_* \colon Graph(\mathcal{C}) \to \mathcal{C}^{\Delta_0^{op}}$ of def. \ref{AdjointTripleFromGraphs} sends a graph $X_1 \stackrel{\overset{\partial_1}{\to}}{\underset{\partial_0}{\to}} X_0$ to the presheaf $i_*(X)$ which on $n \in \mathbb{N}$ is given by th iterated [[pullback]] \begin{displaymath} i_*(X) \colon n \mapsto \underbrace{X_1 \times_{X_0} \times \cdots \times_{X_0} X_1}_{n \; factors} \end{displaymath} and which sends an inclusion $\Delta[k] \simeq (j, \cdots, j+k) \hookrightarrow (0,\cdots, n)\simeq \Delta[n]$ to the corresponding [[projection]] map out of the pullback. We may call $i_*(X)$ the \textbf{nerve of the graph} $X$. \end{prop} \begin{proof} Using the [[Yoneda lemma]] and the defining [[hom functor|hom]]-[[isomorphisms]] of the [[adjunction]] as well as the fact that the [[hom functor]] sends [[colimits]] in the first argument to [[limits]], we have \begin{displaymath} \begin{aligned} i_*(X)(n) & \simeq Hom(\Delta[n], i_*(X)) \\ & \simeq Hom(i^* \Delta[n], X) \\ & \simeq Hom( \underbrace{\Delta[1] \coprod_{\Delta[0]} \cdots \coprod_{\Delta[0]} \Delta[1]}, X ) \\ & \simeq \underbrace{ Hom(\Delta[1], X) \underset{Hom(\Delta[0], X)}{\times} \cdots \underset{Hom(\Delta[0], X)}{\times} Hom(\Delta[1], X) }_{n\;factors} \\ & \simeq \underbrace{ X \times_{X_0} \cdots \times_{X_0} X_1 }_{n\; factors} \end{aligned} \,. \end{displaymath} \end{proof} \begin{prop} \label{CoverageOnDelta0}\hypertarget{CoverageOnDelta0}{} For $n \in \mathbb{N}$ declare a unique [[covering]] family of $\Delta[n] \in \Delta_0$ to be \begin{displaymath} \left\{ \Delta\left[1\right] \simeq \left(k,k+1\right) \hookrightarrow \Delta\left[n\right] \right\}_{k = 0}^{n-1} \,. \end{displaymath} Then this is a [[coverage]] on $\Delta_0$. \end{prop} \begin{prop} \label{}\hypertarget{}{} A [[presheaf]] $X \colon \Delta_0^{op} \to \mathcal{C}$ is a [[sheaf]] with respect to the coverage of def. \ref{CoverageOnDelta0} precisely if it is in the [[essential image]] of the graph-nerve functor \begin{displaymath} i_* \colon Graph(\mathcal{C}) \simeq \mathcal{C}^{(1 \stackrel{\to}{\to} 0)} \stackrel{}{\to} \mathcal{C}^{\Delta_0^{op}} \end{displaymath} of prop. \ref{NerveOfGraph}. This yields an [[equivalence of categories]] \begin{displaymath} Graph(\mathcal{C}) \simeq Sh(\Delta_0) \end{displaymath} with the [[category of sheaves]] on $\Delta_0$. The graph-nerve functor is a [[full and faithful functor]] \begin{displaymath} i_* \colon Graph \simeq Sh(\Delta_0) \hookrightarrow PSh(\Delta_0) \,. \end{displaymath} \end{prop} \begin{defn} \label{AdjointTripleFromSimplicialSets}\hypertarget{AdjointTripleFromSimplicialSets}{} Write \begin{displaymath} (j_! \dashv j^* \dashv j_*) \colon \mathcal{C}^{\Delta_0^{op}} \stackrel{\overset{j_!}{\to}}{\stackrel{\overset{j^*}{\leftarrow}}{\underset{j_*}{\to}}} \mathcal{C}^{\Delta^{op}} \end{displaymath} for the [[adjoint triple]] induced on [[categories of presheaves]] by the inclusion $j$ of def. \ref{FiniteLinearGraphsInAllGraphs}: $j^*$ is given by precomposition with $j$, $j_!$ is left and $j_*$ is right [[Kan extension]] along $j$. \end{defn} In terms of all this the nerve theorem \ref{NerveTheorem} says the following: We have [[geometric morphisms]] of [[toposes]] \begin{displaymath} Grph \simeq Sh(\Delta_0) \stackrel{\overset{i_!}{\to}}{ \stackrel{\overset{i^*}{\leftarrow}}{\underset{i_*}{\hookrightarrow}}} PSh(\Delta_0) \stackrel{\overset{j_!}{\to}}{\stackrel{\overset{j^*}{\leftarrow}}{\underset{j_*}{\to}}} PSh(\Delta) \simeq sSet \end{displaymath} which capture the Segal condition as follows. \begin{prop} \label{CatAsPullback}\hypertarget{CatAsPullback}{} The [[commuting diagram]] of [[1-categories]] \begin{displaymath} \itexarray{ Cat &\stackrel{N}{\hookrightarrow}& PSh(\Delta) \simeq sSet \\ \downarrow^{\mathrlap{U}} && \downarrow^{\mathrlap{j^*}} \\ Graph \simeq Sh(\Delta_0) &\stackrel{i_*}{\hookrightarrow}& PSh(\Delta_0) } \,, \end{displaymath} where \begin{itemize}% \item $N$ forms the [[nerve of a category]]; \item $U$ is the [[forgetful functor]] that sends a category to its underlying graph \end{itemize} is a [[pullback]]. \end{prop} \begin{remark} \label{AdjointsToTheSegalPullbackDiagram}\hypertarget{AdjointsToTheSegalPullbackDiagram}{} The morphisms in the commuting diagram of prop. \ref{CatAsPullback} participate in further [[adjunctions]], and in terms of these the Segal condition may further be reformulated as a restriction condition on [[algebras over an operad]]: First of all the nerve has a [[left adjoint]] $\tau \colon PSh(\Delta) \to Cat$. With this the left adjoint $j_!$ of $j^*$ induces a left adjoint \begin{displaymath} F \simeq \tau j_! i_* \end{displaymath} of $U$, which is the [[free category]] functor. Moreover, with $U$ also $j^*$ is a [[monadic functor]] and the [[monad]] $U F \colon Grph \to Grph$ of which [[Cat]] is the category of [[algebras over a monad|algebras]] is the restriction of the monad $j^* \circ j_!$: \begin{displaymath} i_* U F \simeq j^* j_! i_* \,. \end{displaymath} (All this is discussed in (\hyperlink{Berger}{Berger, p. 13}), and actually in the further generality of cellular sets that we get to \hyperlink{InTermsOfPullBackOfCatOfSheavesForCellularObjects}{below}.) In summary we have a diagram of adjoint pairs of functors of the form \begin{displaymath} \itexarray{ Cat &\stackrel{\overset{\tau}{\leftarrow}}{\underoverset{N}{\bottom}{\hookrightarrow}}& PSh(\Delta) \simeq sSet \\ {}^{\mathllap{U}}\downarrow \vdash \uparrow^{\mathrlap{F}} && {}^{\mathllap{j^*}}\downarrow \vdash \uparrow^{\mathrlap{j_!}} \\ Graph \simeq Sh(\Delta_0) &\stackrel{\overset{i^*}{\leftarrow}}{\underoverset{i_*}{\bottom}{\hookrightarrow}}& PSh(\Delta_0) } \end{displaymath} where several (however not all) subdiagrams of functors commute, as discussed above. In terms of this the reformulation of the Segal condition as in prop. \ref{CatAsPullback} is now further reformulated as: \emph{A category is equivalently an algebra over the monad $j^* j_!$ on $PSh(\Delta_0)$ which satisfies the Segal condition in that it is in the essential image of the functor $i_*$ of prop. \ref{NerveOfGraph}.} \end{remark} \hypertarget{InTermsOfPullBackOfCatOfSheavesForCellularObjects}{}\paragraph*{{For cellular objects and $\omega$-category objects}}\label{InTermsOfPullBackOfCatOfSheavesForCellularObjects} The immediate generalization of prop. \ref{CatAsPullback} from simplicial objects to [[cellular objects]] is the following. Let \begin{displaymath} j \colon \Theta_0 \to \Theta \end{displaymath} be the defining inclusion of the [[cellular site]] into the [[cell category]]. \begin{prop} \label{}\hypertarget{}{} The category $Str\omega Cat$ of [[strict ∞-categories]] is the [[pullback]] \begin{displaymath} \itexarray{ Str\omega Cat &\underoverset{\simeq}{N}{\to}& Mod_\Theta &\hookrightarrow& PSh(\Theta) \\ \downarrow^{\mathrlap{U}} && \downarrow^{} && \downarrow^{\mathrlap{j^*}} \\ \omega Graph &\stackrel{\simeq}{\to}& Sh(\Theta_0) &\hookrightarrow& PSh(\Theta_0) } \,. \end{displaymath} \end{prop} See at \emph{[[globular theory]]} for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Segal space]], [[complete Segal space]], [[n-fold complete Segal space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The ``Segal conditions'' are originally due to \begin{itemize}% \item [[Graeme Segal]], \emph{Classifying spaces and spectral sequences}, Inst. Hautes \'E{}tudes Sci. Publ. Math., vol. 34, pp. 105--112 (1968) \end{itemize} where they are attributed to [[Alexander Grothendieck]]. The interpretation of the Segal condition as a [[sheaf]] condition is reviewed for instance in section 2 of \begin{itemize}% \item [[Joachim Kock]], \emph{Polynomial functors and trees} (\href{http://mat.uab.es/~kock/cat/poly-trees.pdf}{pdf}) \end{itemize} and discussed for [[strict infinity-categories]] in \begin{itemize}% \item [[Clemens Berger]], \emph{A cellular nerve for higher categories}, Advances in Mathematics 169, 118-175 (2002) (\href{http://math1.unice.fr/~cberger/nerve.pdf}{pdf}) \end{itemize} Based on that, an iterative and homotopy-theoretic formulation of the cellular Segal conditions is in section 5 of \begin{itemize}% \item [[Charles Rezk]], \emph{A cartesian presentation of weak $n$-categories} Geom. Topol. 14 (2010), no. 1, 521--571 (\href{http://arxiv.org/abs/0901.3602}{arXiv:0901.3602}) \end{itemize} [[!redirects Segal conditions]] \end{document}