\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Segal space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{InSetByNervesOfCategories}{In $Set$}\dotfill \pageref*{InSetByNervesOfCategories} \linebreak \noindent\hyperlink{ConstructionFromACategory}{Construction in $1Grpd$ from a category}\dotfill \pageref*{ConstructionFromACategory} \linebreak \noindent\hyperlink{ExamplesInIGrpd}{In $1Grpd$}\dotfill \pageref*{ExamplesInIGrpd} \linebreak \noindent\hyperlink{related_notions}{Related notions}\dotfill \pageref*{related_notions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Segal space} is a [[precategory object in an (∞,1)-category|pre-category object]] in [[∞Grpd]]. A genuine [[category object in an (∞,1)-category|category object]] in [[∞Grpd]] is a \emph{[[complete Segal space]]}. This is a way of speaking of [[(∞,1)-categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{Segal space} $X_\bullet$ is a [[simplicial topological space]] or [[bisimplicial set]] $X_\bullet : \Delta^{op} \to Top$ which satisfies the [[Segal conditions]]: for all $m,n \in \mathbb{N}$ the square \begin{displaymath} \itexarray{ X_{m+n} &\stackrel{ p^*_{0,\cdots, m} }{\to}& X_m \\ {}^{\mathllap{p^*_{m, \cdots, m+n}}}\downarrow && \downarrow^{\mathrlap{p^*_m}} \\ X_n &\stackrel{p^*_0}{\to}& X_0 } \end{displaymath} is a [[homotopy pullback]] square. A Segal space for which $X_0$ is a [[discrete space]] is called a \emph{[[Segal category]]}. See there for more dicussion. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{InSetByNervesOfCategories}{}\subsubsection*{{In $Set$}}\label{InSetByNervesOfCategories} For $\mathcal{C}$ a ([[small category|small]]) [[category]] we may regard its ordinary [[nerve]] [[simplicial set]] $N(\mathcal{C}) \in Set^{\Delta^{op}}$ as a Segal space, under the canonical inclusion $Set \hookrightarrow \infty Grpd$, \begin{displaymath} N(\mathcal{C}) \in Set^{\Delta^{op}} \hookrightarrow \infty Grpd^{\Delta^{op}} \,. \end{displaymath} In fact, the classical ``nerve theorem'' about the [[Segal conditions]] says that a simplicial set is the nerve of a category precisely if it is a Segal space. Notice that $Equiv(N(\mathcal{C})_1) \hookrightarrow N(\mathcal{C})_1$ is precisely the [[subset]] of [[isomorphisms]] in all [[morphisms]] of $\mathcal{C}$. Therefore under this identification, $N(\mathcal{C})$ is a [[complete Segal space]] precisely if $\mathcal{C}$ is a [[gaunt category]], hence precisely if the only isomorphisms in $\mathcal{C}$ are the [[identities]]. In particular if $\mathcal{C}$ is a [[(0,1)-category]], hence a [[preordered set]], then $N(\mathcal{C})$ is complete Segal precisely if $\mathcal{C}$ is in fact an [[partially ordered set]]. \hypertarget{ConstructionFromACategory}{}\subsubsection*{{Construction in $1Grpd$ from a category}}\label{ConstructionFromACategory} Let $\mathcal{C}$ be an ordinary category. We discuss how Segal spaces are associated with this. Let $\mathcal{K}$ be a [[groupoid]] and $p \colon \mathcal{K} \to \mathcal{C}$ a [[functor]] which is [[essentially surjective functor|essentially surjective]]. Then let $X_1 \coloneqq (p/p)\in Grpd$ be the ``lax fiber product'' of $p$ with itself, or rather the [[comma object]] of $p$ with itself, hence the [[comma category]], sitting in the universal square \begin{displaymath} \itexarray{ X_1 &\stackrel{\partial_1}{\to}& \mathcal{K} \\ {}^{\mathllap{\partial_0}}\downarrow &\swArrow& \downarrow^{\mathrlap{p}} \\ \mathcal{K} &\underset{p}{\to}& \mathcal{C} } \,. \end{displaymath} Next let $X_2 = (p/p/p)$ be the ``3-fold comma category'', hence the comma category in \begin{displaymath} \itexarray{ X_2 &\stackrel{\partial_{0}}{\to}& \mathcal{K} \\ {}^{\mathllap{}}\downarrow &\swArrow& \downarrow^{\mathrlap{p}} \\ X_1 &\underset{\partial_1}{\to}& \mathcal{C} } \end{displaymath} and so forth: $X_n \coloneqq p^{/^{n+1}}$. This way an [[object]] of $X_n$ is an $(n+1)$-[[tuple]] of objects $(x_0,x_1, \cdots, x_n) \in \mathcal{K}$ together with a sequence of $n$ composable morphisms $p(x_0) \to p(x_1) \to \cdots \to p(x_n)$, and a [[morphism]] is an $(n+1)$-tuple of morphisms $(f_0,f_1, \cdots, f_n) \in \mathcal{K}$ and a [[pasting]] [[commuting diagram]] \begin{displaymath} \itexarray{ p(x_0) &\to& p(x_1) &\to& \cdots &\to& p(x_1) \\ {}^{\mathllap{p(f_0)}}\downarrow && \downarrow^{\mathrlap{p(f_1)}} && \cdots && \downarrow^{\mathrlap{p(f_1)}} \\ p(x'_0) &\to& p(x_1) &\to& \cdots &\to& p(x'_1) } \end{displaymath} in $\mathcal{C}$. By direct inspection, the maps $X_n \to X^{\partial \Delta^n}$ obtained this way are [[isofibrations]], hence [[fibrations]] in the [[canonical model structure]] on [[Grpd]] and so the [[homotopy pullbacks]] that enter the [[Segal conditions]] for $X_\bullet$ are given by ordinary [[fiber products]]. These clearly satisfy the Segal conditions, hence \begin{displaymath} X_\bullet \in Grpd^{\Delta} \hookrightarrow \infty Grpd^{\Delta^{op}} \end{displaymath} constructed this way is a Segal space. Two special case of the functor $p$ are important: \begin{itemize}% \item if $\mathcal{K} \simeq core(\mathcal{C})$ is the [[core]] of $\mathcal{C}$ and $p$ is the canonical core inclusion, one finds that $Equiv(X_1) \hookrightarrow X_1$ by the above construction is $Equiv(X_1) = Core(\mathcal{C})^{\Delta^1}$, the [[arrow category]] of the [[core]] of $\mathcal{C}$. This is [[equivalence of categories|equivalent]] to $\mathcal{C}$ by, for instance, the source or restriction map. Hence for $p$ the core inclusion, the above construction gives the [[complete Segal space]] corresponding to the category $\mathcal{C}$. \item if $p \colon \pi_0(\mathcal{C}) \to \mathcal{C}$ is a choice of basepoints in each [[isomorphism class]] of $\mathcal{C}$, then $X_\bullet$ is the [[Segal category]] incarnation of the category $\mathcal{C}$. \end{itemize} \hypertarget{ExamplesInIGrpd}{}\subsubsection*{{In $1Grpd$}}\label{ExamplesInIGrpd} We consider the situation of \emph{\hyperlink{ConstructionFromACategory}{From a category}}, but now conversely, starting with a Segal space in groupoids and then extracting a category from it. Consider a Segal space that is degreewise just a [[1-groupoid]], hence a simplicial object in the inclusion \begin{displaymath} X_\bullet \in 1Grpd^{\Delta^{op}} \hookrightarrow \infty Grpd^{\Delta^{op}} \,. \end{displaymath} Choosing this to be [[Reedy model structure|Reedy]] [[fibrant object|fibrant]], the map $(\partial_0,\partial_1) \colon X_1 \to X_0 \times X_0$ is an [[isofibration]]. We may write an object $K \in X_1$ as a horizontal morphism \begin{displaymath} \partial_1(K) \stackrel{K}{\to} \partial_2(K) \end{displaymath} and a morphism $\lambda \colon L \to K$ in $X_1$ as a vertical [[double category]] arrow: \begin{displaymath} \itexarray{ \partial_1(L) & \stackrel{L}{\to} & \partial_0(L) \\ {}^{\mathllap{\partial_1(\lambda)}}\downarrow &\Downarrow^{\mathrlap{\lambda}}& \downarrow^{\mathrlap{\partial_0(\lambda)}} \\ \partial_1(K) &\stackrel{K}{\to}& \partial_0(K) } \,. \end{displaymath} Then the fact that $(\partial_1,\partial_0)$ is an [[isofibration]] means that for every ``niche'' \begin{displaymath} \itexarray{ y_0 & & y_1 \\ {}^{\mathllap{f_0}}\downarrow && \downarrow^{\mathrlap{f_1}} \\ x_0 &\stackrel{K}{\to}& x_1 } \,, \end{displaymath} namely for every pair of morphisms $f_0, f_1$ in $X_0$ and lift of its codomain to an object $K \in X_1$, there is a ``niche filler'' \begin{displaymath} \itexarray{ y_0 & \stackrel{L}{\to} & Y_1 \\ {}^{\mathllap{f_0}}\downarrow &\Downarrow^{\mathrlap{\lambda}}& \downarrow^{\mathrlap{f_1}} \\ x_0 &\stackrel{K}{\to}& x_1 } \,, \end{displaymath} namely a lift of the whole pair $(f_0,f_1)$ to a morphism $\lambda$ in $X_1$, and this is necessarily universal in that any other such lift uniquely factors through this one (because $X_1$ is a groupoid). Comparison with the definition of a [[2-category equipped with proarrows]] in the incarnation \emph{\href{2-category+equipped+with+proarrows#DefinitionAsDoubleCategory}{as a double category}} shows that this is the beginning of the construction of a [[pseudo double category]] whose vertical category is $X_0$ and whose weak horizontal composition is that induced by the Segal maps. Assume next that $X_3 \to X^{\partial \Delta^2}$ is a [[1-monomorphism]], as are all the higher $X^n \to X^{\partial \Delta^n }$, for $n \geq 3$, hence that $X_\bullet$ is [[coskeleton|2-coskeletal]] as a simplicial object. This means that the horizontal composition in this pseudo double category has unique composites, hence that the horizontal category is an ordinary category. If then furthermore the composite $Equiv(X_1) \to X_1 \stackrel{\partial_0}{\to} X_0$ is an equivalence, hence is the Segal space is a [[complete Segal space]] this means that $X_\bullet$ arises from this horizontal category by the construction \hyperlink{ConstructionFromACategory}{above}. \hypertarget{related_notions}{}\subsection*{{Related notions}}\label{related_notions} \begin{itemize}% \item [[reduced Segal space]], [[Segal category]], \item [[semi-Segal space]] \item [[complete Segal space]], [[model structure for complete Segal spaces]] \item [[higher Segal space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See generally the references at \emph{[[complete Segal space]]}. The ``[[Segal conditions]]'' are first discussed in \begin{itemize}% \item [[Graeme Segal]], \emph{Classifying spaces and spectral sequences}, Inst. Hautes \'E{}tudes Sci. Publ. Math., vol. 34, pp. 105--112 (1968), \end{itemize} where it is attributed to [[Alexander Grothendieck]]. The term ``Segal space'' is due to \begin{itemize}% \item [[Charles Rezk]], \ldots{} \end{itemize} The \emph{invertible} case of Segal spaces, hence models for [[groupoid objects in an (infinity,1)-category]] are discussed in section 3 of \begin{itemize}% \item [[Julia Bergner]], \emph{Adding inverses to diagrams II: Invertible homotopy theories are spaces}, Homology, Homotopy and Applications, Vol. 10 (2008), No. 2, pp.175-193. (\href{http://www.intlpress.com/hha/v10/n2/a9/}{web}, \href{http://arxiv.org/abs/0710.2254}{arXiv:0710.2254}) \end{itemize} [[!redirects Segal spaces]] \end{document}