\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Seiberg duality} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{realization_in_string_theory}{Realization in string theory}\dotfill \pageref*{realization_in_string_theory} \linebreak \noindent\hyperlink{formalization_by_derived_quiver_categories}{Formalization by derived quiver categories}\dotfill \pageref*{formalization_by_derived_quiver_categories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{toric_duality}{Toric duality}\dotfill \pageref*{toric_duality} \linebreak \noindent\hyperlink{from_dbranes_on_del_pezzo_singularities}{From D-branes on del Pezzo singularities}\dotfill \pageref*{from_dbranes_on_del_pezzo_singularities} \linebreak \noindent\hyperlink{ExamplesForExceptionalGaugeGroups}{For exceptional gauge groups}\dotfill \pageref*{ExamplesForExceptionalGaugeGroups} \linebreak \noindent\hyperlink{chiral_and_nonchiral_duals}{Chiral and non-chiral duals}\dotfill \pageref*{chiral_and_nonchiral_duals} \linebreak \noindent\hyperlink{duality_cascade}{Duality cascade}\dotfill \pageref*{duality_cascade} \linebreak \noindent\hyperlink{with_few_supercharges}{With few supercharges}\dotfill \pageref*{with_few_supercharges} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{lectures_and_reviews}{Lectures and reviews}\dotfill \pageref*{lectures_and_reviews} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Seiberg duality (named after (\hyperlink{Seiberg}{Seiberg})) is a version of [[electric-magnetic duality]] in [[supersymmetry|supersymmetric]] [[gauge theory]]. For supersymmetric [[QCD]] it identifies in the infrared (long distance limit, and only there) the [[quarks]] and [[gluons]] in a theory with $N_f$ quark flavors and $SU(N_c)$ [[gauge group]] for \begin{displaymath} N_f \gt N_c +1 \end{displaymath} with [[soliton]]s in a theory of $N_f$ quark flavors and gauge group $SU(\tilde N_c)$, where \begin{displaymath} \tilde N_c = N_f - N_c \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{realization_in_string_theory}{}\subsubsection*{{Realization in string theory}}\label{realization_in_string_theory} Seiberg duality follows from phenomena in [[string theory]], where gauge theories arise as the [[worldvolume]] theories of [[D-branes]] ([[geometric engineering of quantum field theory]]). Seiberg duality is obtained for gauge theories of [[D-branes]] that stretch between two [[NS5-brane]]s. The duality operation corresponds to exchanging the two NS5-branes. \begin{itemize}% \item [[Amihay Hanany]] and [[Edward Witten]], \emph{Type-IIB superstrings, BPS monopoles and three-dimensional gauge dynamics} , Nucl. Phys. B 492 (1997) 152 (\href{}{hep-th/9611230}). \item S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici and A. Schwimmer, \emph{Brane dynamics and $N = 1$ supersymmetric gauge theory, Nucl. Phys. B 505 (1997) 202 (\href{}{hep-th/9704104})} \end{itemize} See also \emph{[[string theory results applied elsewhere]]}. \hypertarget{formalization_by_derived_quiver_categories}{}\subsubsection*{{Formalization by derived quiver categories}}\label{formalization_by_derived_quiver_categories} Seiberg duality is formalized by [[equivalence of categories|equivalences]] of [[derived categories]] of [[quiver]] representations. \begin{itemize}% \item David Berenstein, [[Michael Douglas]], \emph{Seiberg Duality for Quiver Gauge Theories} (\href{http://arxiv.org/abs/hep-th/0207027}{arXiv:hep-th/0207027}) \item Subir Mukhopadhyay, Koushik Ray, \emph{Seiberg duality as derived equivalence for some quiver gauge theories} (\href{http://arxiv.org/abs/hep-th/0309191}{arXiv:hep-th/0309191}) \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{toric_duality}{}\subsubsection*{{Toric duality}}\label{toric_duality} \emph{Toric Duality} is Seiberg duality for $N=1$ theories with toric [[moduli spaces]]. \begin{itemize}% \item Bo Feng, [[Amihay Hanany]] and Y.-H. He, \emph{D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 hep-th/0003085.} \item C.E. Beasley and [[M. Ronen Plesser]], \emph{Toric duality is Seiberg duality}, J. High Energy Phys. 12 (2001) 001 hep-th/0109053. JHEP02(2004)070 \item Bo Feng, [[Amihay Hanany]] and Y.-H. He, \emph{Phase structure of D-brane gauge theories and toric duality} , J. High Energy Phys. 08 (2001) 040 hep-th/0104259. \item Bo Feng, [[Amihay Hanany]], Y.-H. He and A.M. Uranga, \emph{Toric duality as Seiberg duality and brane diamonds, J. High Energy Phys. 12 (2001) 035 hep-th/0109063.} \item Bo Feng, S. Franco, [[Amihay Hanany]] and Y.-H. He, \emph{Unhiggsing the del Pezzo}, J. High Energy Phys. 08 (2003) 058 hep-th/0209228. \item S. Franco and [[Amihay Hanany]], \emph{Toric duality, Seiberg duality and Picard-Lefschetz transformations} , Fortschr. Phys. 51 (2003) 738 hep-th/0212299. \end{itemize} \hypertarget{from_dbranes_on_del_pezzo_singularities}{}\subsubsection*{{From D-branes on del Pezzo singularities}}\label{from_dbranes_on_del_pezzo_singularities} \begin{itemize}% \item Christopher P. Herzog, \emph{Seiberg Duality is an Exceptional Mutation} (\href{http://arxiv.org/abs/hep-th/0405118}{arXiv:hep-th/0405118}) \item Subir Mukhopadhyay, Koushik Ray, \emph{Seiberg duality as derived equivalence for some quiver gauge theories} Journal of High Energy Physics Volume 2004 JHEP02(2004) \end{itemize} \hypertarget{ExamplesForExceptionalGaugeGroups}{}\subsubsection*{{For exceptional gauge groups}}\label{ExamplesForExceptionalGaugeGroups} Seiberg duality for [[gauge group]]s which are [[exceptional Lie group]]s: \begin{itemize}% \item [[Jacques Distler]], [[Andreas Karch]], \emph{$N=1$ Dualities for Exceptional Gauge Groups and Quantum Global Symmetries} (\href{http://arxiv.org/abs/hep-th/9611088}{arXiv:hep-th/9611088}) \end{itemize} But see \begin{itemize}% \item Peter Cho, \emph{Moduli in Exceptional SUSY Gauge Theories} (\href{http://arxiv.org/abs/hep-th/9712116}{arXiv:hep-th/9712116}) \end{itemize} \hypertarget{chiral_and_nonchiral_duals}{}\subsubsection*{{Chiral and non-chiral duals}}\label{chiral_and_nonchiral_duals} \begin{itemize}% \item P. Pouliot, \emph{Chiral Duals of Non-Chiral SUSY Gauge Theories} (\href{http://arxiv.org/abs/hep-th/9507018}{arXiv:hep-th/9507018}) \end{itemize} \hypertarget{duality_cascade}{}\subsubsection*{{Duality cascade}}\label{duality_cascade} Due to \begin{itemize}% \item [[Igor Klebanov]], [[Matthew Strassler]], \emph{Supergravity and a Confining Gauge Theory: Duality Cascades and $\chi$SB-Resolution of Naked Singularities} (\href{http://arxiv.org/abs/hep-th/0007191}{arXiv}) \end{itemize} A review is in \begin{itemize}% \item [[Matthew Strassler]], \emph{The Duality Cascade} (\href{http://arxiv.org/abs/hep-th/0505153}{arXiv:hep-th/0505153}) \end{itemize} Discussion in connection with non-conformal variants of [[AdS/CFT]] is in \begin{itemize}% \item Eduardo Conde, Jerome Gaillard, [[Carlos Núñez]], Maurizio Piai, Alfonso V. Ramallo, \emph{Towards the string dual of tumbling and cascading gauge theories} (\href{http://arxiv.org/abs/1112.3346}{arXiv:1112.3346}) \end{itemize} \hypertarget{with_few_supercharges}{}\subsubsection*{{With few supercharges}}\label{with_few_supercharges} \begin{itemize}% \item a 3d [[Yang-Mills theory|Yang-Mills]] [[Chern-Simons theory]] with two [[supercharges]] ($N = 1$ SUSY in 3d) (Adi Armoni, Amit Giveon, Dan Israel, Vasilis Niarchos, 2009) \item a non-supersymmetric theory in $4d$; (Adi Armoni, Dan Israel, Gregory Moraitis, Vasilis Niarchos, 2008). \end{itemize} Discussed in \begin{itemize}% \item Adi Armoni, \emph{Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges} (\href{http://pyweb.swan.ac.uk/~pyarmoni/seiberg.pdf}{pdf}) \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[quiver gauge theory]] \end{itemize} [[duality in physics]] \begin{itemize}% \item [[S-duality]] \begin{itemize}% \item [[electric-magnetic duality]] \begin{itemize}% \item [[Montonen-Olive duality]] \end{itemize} \item \textbf{Seiberg duality} \item [[geometric Langlands duality]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} The original article is \begin{itemize}% \item [[Nathan Seiberg]], \emph{Electric-Magnetic Duality in Supersymmetric Non-Abelian Gauge Theories} (\href{http://arxiv.org/abs/hep-th/9411149}{arXiv:hep-th/9411149}) \end{itemize} The ``cascade'' of Seiberg dualities is due to \begin{itemize}% \item [[Igor Klebanov]], [[Matthew Strassler]], \emph{Supergravity and a Confining Gauge Theory: Duality Cascades and $\chi$SB-Resolution of Naked Singularities} (\href{http://arxiv.org/abs/hep-th/0007191}{arXiv:hep-th/0007191}) \end{itemize} \hypertarget{lectures_and_reviews}{}\subsubsection*{{Lectures and reviews}}\label{lectures_and_reviews} Surveys and reviews include \begin{itemize}% \item [[Matthew Strassler]], \emph{The Duality Cascade} (2005) (\href{http://arxiv.org/abs/hep-th/0505153}{arXiv:hep-th/0505153}) \item M. Chaichian, W.F. Chen, C. Montonen, \emph{New Superconformal Field Theories in Four Dimensions and N=1 Duality} (\href{http://arxiv.org/abs/hep-th/0007240}{arXiv:hep-th/0007240}) \item Flip Tanedo, \emph{Notes on Seibergology} (\href{http://www.lns.cornell.edu/~pt267/files/notes/Seibergology.pdf}{pdf}) \end{itemize} See also section 22 of \begin{itemize}% \item Philip Argyres, \emph{Introduction to supersymmetry} (\href{http://www.physics.uc.edu/~argyres/661/susy1996.pdf}{pdf}) \end{itemize} [[!redirects Seiberg dualities]] \end{document}