\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Selberg zeta function} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \begin{quote}% under construction \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_evendimensional_manifolds}{For even-dimensional manifolds}\dotfill \pageref*{for_evendimensional_manifolds} \linebreak \noindent\hyperlink{DefinitionForOdd}{For odd-dimensional manifolds}\dotfill \pageref*{DefinitionForOdd} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AnalogyWithArtinLFunction}{Analogy with Artin L-function}\dotfill \pageref*{AnalogyWithArtinLFunction} \linebreak \noindent\hyperlink{RelationToTheEtaFunction}{Relation to the eta-function}\dotfill \pageref*{RelationToTheEtaFunction} \linebreak \noindent\hyperlink{RelationToAnalyticTorsion}{Relation to analytic torsion}\dotfill \pageref*{RelationToAnalyticTorsion} \linebreak \noindent\hyperlink{relation_to_prime_geodesic_asymptotics}{Relation to prime geodesic asymptotics}\dotfill \pageref*{relation_to_prime_geodesic_asymptotics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Motivated by the resemblance of the [[Selberg trace formula]] to Weil's formula for the sum of zeros of the [[Riemann zeta function]], (\hyperlink{Selberg56}{Selberg 56}) defined for any compact [[hyperbolic manifold|hyperbolic]] [[Riemann surface]] a [[zeta function]]-like expression, the \emph{[[Selberg zeta function of a Riemann surface]]}. (e.g. \hyperlink{Bump}{Bump, below theorem 19}). There is also a Selberg zeta function ``of odd type'' for odd-dimensional manifolds (\hyperlink{Millson78}{Millson 78}, \hyperlink{BunkeOlbrich94a}{Bunke-Olbrich 94a, prop. 4.5}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_evendimensional_manifolds}{}\subsubsection*{{For even-dimensional manifolds}}\label{for_evendimensional_manifolds} (\ldots{}) \hypertarget{DefinitionForOdd}{}\subsubsection*{{For odd-dimensional manifolds}}\label{DefinitionForOdd} Let \begin{itemize}% \item $n \in \mathbb{N}$, $n \geq 1$; \item $G = SO(n,1)$ the [[Lorentz group]] or $G = Spin(n,1)$ its [[spin group]]; \item $K = SO(n)$ the [[special orthogonal group]] or $K = Spin(n)$ the [[spin group]]; \item $K \hookrightarrow G$ the canonical inclusion, exhibiting a [[maximal compact subgroup]]; \item $G = K A N$ an [[Iwasawa decomposition]]; \item $\Gamma \hookrightarrow G$ a [[discrete group|discrete]] [[subgroup]]; \item $E$ a [[complex vector space|complex]] [[finite dimensional vector space]] \item $\chi \colon \Gamma \to U(E)$ a [[unitary representation]] of $\Gamma$. \end{itemize} Then the [[quotient]] \begin{displaymath} X \coloneqq \Gamma \backslash G / K \end{displaymath} is a [[hyperbolic manifold]] of odd [[dimension]] with [[fundamental group]] being $\pi_1(X) \simeq \Gamma$. Accordingly the representation $\chi$ is equivalently a [[flat vector bundle]] on $X$. Write $Conj(\Gamma)$ for the set of [[conjugacy classes]] of $\Gamma$ and write \begin{displaymath} Prim(\Gamma) \hookrightarrow Conj(\Gamma) \end{displaymath} for the [[subset]] of elements $[g]$ for which $n_\Gamma(g) = 1$. Regarded as elements of the [[fundamental group]] as above, these elements correspond to paths which are [[prime geodesics]] in $X$. \textbf{Definition} The \emph{Selberg zeta function} $\zeta_\chi$ of this data is defined for $Re(s)\gt \rho \coloneqq (n-1)/2$ to be the [[infinite product]] \begin{displaymath} \zeta_\chi(s) = \underset{{[g] \in Prim(\Gamma)} \atop {[g] \neq 1}}{\prod} \; \underoverset{k = 0}{\infty}{\prod} \det\left( 1 - e^{-(\rho + s)l(g)} S^k(Ad(g)^{-1}_{\mathbf{n}}) \sigma(m) \; \chi(g) \right) \end{displaymath} (\ldots{}) (\hyperlink{BunkeOlbrich94a}{BunkeOlbrich 94a, def. 4.1}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AnalogyWithArtinLFunction}{}\subsubsection*{{Analogy with Artin L-function}}\label{AnalogyWithArtinLFunction} That the Selberg zeta function is equivalently an [[Euler product]] of [[characteristic polynomials]] is due to (\hyperlink{Gangolli77}{Gangolli 77, (2.72)}, \hyperlink{Fried86}{Fried 86, prop. 5}). That it is in particular the Euler product of [[characteristic polynomials]] of the [[determinants]] of the [[monodromies]] of the [[flat connection]] corresponding to the given [[group representation]] (similar to the [[Ruelle zeta function]]) is (\hyperlink{BunkeOlbrich94}{Bunke-Olbrich 94, prop. 6.3}) for the even-dimensional case and (\hyperlink{BunkeOlbrich94a}{Bunke-Olbrich 94a, def. 4.1}) for the odd-dimensional case. (Or rather, the [[Ruelle zeta function]] (\hyperlink{BunkeOlbrich94a}{Bunke-Olbrich 94a, def. 5.1})). This is [[analogy|analogous]] to the standard definition of an [[Artin L-function]] if one interprets a) a [[Frobenius map]] $Frob_p$ (as discussed there) as an element of the [[arithmetic fundamental group]] of an [[arithmetic curve]] and b) a [[Galois representation]] as a [[flat connection]]. So under this analogy the Selberg zeta function for hyperbolic 3-manifolds as well as the [[Artin L-function]] for a [[number field]] both are like an [[infinite product]] over primes ([[prime geodesics]] in one case, [[prime ideals]] in the other, see also at \emph{\href{Spec%28Z%29#As3dSpaceContainingKnots}{Spec(Z) -- As a 3-dimensional space containing knots}}) of determinants of monodromies of the given flat connection. See at \emph{\href{Artin%20L-function#AnalogyWithSelbergZeta}{Artin L-function -- Analogy with Selberg zeta function}} for more. This analogy has been highlighted in (\hyperlink{Brown09}{Brown 09}, \hyperlink{Morishita12}{Morishita 12, remark 12.7}). \hypertarget{RelationToTheEtaFunction}{}\subsubsection*{{Relation to the eta-function}}\label{RelationToTheEtaFunction} Under suitable conditions, the Selberg zeta function of odd type is an exponential of the [[eta function]] of a suitable [[Dirac operator]] \begin{displaymath} \zeta_S(0) = \exp\left(i \pi \eta_D(0)\right) \end{displaymath} (\hyperlink{Millson78}{Millson 78}, \hyperlink{BunkeOlbrich94a}{Bunke-Olbrich 94a, prop. 4.5}, \hyperlink{Park01}{Park 01, theorem 1.2}, \hyperlink{GuillarmouMoroianuPark09}{Guillarmou-Moroianu-Park 09}). \hypertarget{RelationToAnalyticTorsion}{}\subsubsection*{{Relation to analytic torsion}}\label{RelationToAnalyticTorsion} The [[Ruelle zeta function]] at 0 gives a power of [[analytic torsion]] (\hyperlink{Fried86}{Fried 86}, \hyperlink{BunkeOlbrich94a}{Bunke-Olbrich 94a, theorem 5.5.}) \begin{itemize}% \item \href{analytic+torsion#RelationToSelbergZeta}{analytic torsion -- relation to Selberg zeta function} \end{itemize} \hypertarget{relation_to_prime_geodesic_asymptotics}{}\subsubsection*{{Relation to prime geodesic asymptotics}}\label{relation_to_prime_geodesic_asymptotics} The Selberg zeta function controls the [[asymptotics]] of [[prime geodesics]] via the [[prime geodesic theorem]] in direct [[analogy]] to how the [[Riemann zeta function]] controls the asymptotics of [[prime numbers]] via the [[prime number theorem]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Ruelle zeta function]] \end{itemize} [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Atle Selberg]], \emph{Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series}, Journal of the Indian Mathematical Society 20 (1956) 47-87. \end{itemize} Review includes \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Selberg_zeta_function}{Selberg zeta function}} \item [[Matthew Watkins]], citation collection on \emph{\href{http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/physics4.htm}{Selberg trace formula and zeta functions}} \item Bump, below theorem 19 in \emph{Spectral theory of $\Gamma \backslash SL(2,\mathbb{R})$} ([[BumpSpectralTheory.pdf:file]]) \item \emph{Selberg and Ruelle zeta functions for compact hyperbolic manifolds} (\href{http://www.math.uni-bonn.de/people/xenia/Oberseminar%202014/Oberseminar%202014.pdf}{pdf}) \end{itemize} Expression of the Selberg/Ruelle zeta function as an [[Euler product]] of [[characteristic polynomials]] is due to \begin{itemize}% \item Ramesh Gangolli, \emph{Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one}, Illinois J. Math. Volume 21, Issue 1 (1977), 1-41. (\href{http://projecteuclid.org/euclid.ijm/1256049498}{Euclid}) \item [[David Fried]], \emph{The zeta functions of Ruelle and Selberg. I}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 4, 19 no. 4 (1986), p. 491-517 (\href{http://www.numdam.org/item?id=ASENS_1986_4_19_4_491_0}{Numdam}) \end{itemize} The analogy with the [[Artin L-function]] is highlighted in \begin{itemize}% \item Darin Brown, \emph{Lifting properties of prime geodesics}, Rocky Mountain J. Math. Volume 39, Number 2 (2009), 437-454 (\href{http://projecteuclid.org/euclid.rmjm/1239113439}{euclid}) \item [[Masanori Morishita]], section 12.1 of \emph{Knots and Primes: An Introduction to Arithmetic Topology}, 2012 (\href{https://books.google.co.uk/books?id=DOnkGOTnI78C&pg=PA156#v=onepage&q&f=false}{web}) \end{itemize} Discussion of the relation between, on the one hand, [[zeta function of an elliptic differential operator|zeta function]] of [[Laplace operators]]/[[eta function of a self-adjoint operator|eta funcstions]] of [[Dirac operators]] and, on the other hand, Selberg zeta functions includes \begin{itemize}% \item [[Eric D'Hoker]] [[Duong Phong]], \emph{Communications in Mathematical Physics}, Volume 104, Number 4 (1986), 537-545 (\href{http://projecteuclid.org/euclid.cmp/1104115166}{Euclid}) \item [[Peter Sarnak]], \emph{Determinants of Laplacians}, Communications in Mathematical Physics, Volume 110, Number 1 (1987), 113-120. (\href{http://projecteuclid.org/euclid.cmp/1104159171}{Euclid}) \item [[Ulrich Bunke]], [[Martin Olbrich]], Andreas Juhl, \emph{The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function}, Annals of Global Analysis and Geometry February 1994, Volume 12, Issue 1, pp 357-405 \item [[Ulrich Bunke]], Martin Olbrich, \emph{Theta and zeta functions for locally symmetric spaces of rank one} (\href{http://arxiv.org/abs/dg-ga/9407013}{arXiv:dg-ga/9407013}) \end{itemize} and for odd-dimensional spaces also in \begin{itemize}% \item [[David Fried]], \emph{Analytic torsion and closed geodesics on hyperbolic manifolds}, Invent. math. 84, 523-540 (1986) (\href{http://gdz-lucene.tc.sub.uni-goettingen.de/gcs/gcs?&&action=pdf&metsFile=PPN356556735_0084&divID=LOG_0026&pagesize=original&pdfTitlePage=http://gdz.sub.uni-goettingen.de/dms/load/pdftitle/?metsFile=PPN356556735_0084%7C&targetFileName=PPN356556735_0084_LOG_0026.pdf&}{pdf}) \item [[John Millson]], \emph{Closed geodesic and the $\eta$-invariant}, Ann. of Math., 108, (1978) 1-39 (\href{http://www.jstor.org/stable/1970928}{jstor}) \item [[Ulrich Bunke]], [[Martin Olbrich]], \emph{Theta and zeta functions for odd-dimensional locally symmetric spaces of rank one} (\href{http://arxiv.org/abs/dg-ga/9407012}{arXiv:dg-ga/9407012}) \item [[Ulrich Bunke]], [[Martin Olbrich]] \emph{$\Gamma$-Cohomology and the Selbeg zeta function} (\href{http://arxiv.org/abs/dg-ga/9411004}{arXiv:dg-ga/9411004}) \item [[Ulrich Bunke]], [[Martin Olbrich]], \emph{Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group} (\href{http://arxiv.org/abs/dg-ga/9603003}{arXiv:dg-ga/9603003}) \item [[Ulrich Bunke]], [[Martin Olbrich]], \emph{Selberg zeta and theta functions: a differential operator approach}, Akademie Verlag 1995 \item Jinsung Park, \emph{Eta invariants and regularized determinants for odd dimensional hyperbolic manifolds with cusps} (\href{http://arxiv.org/abs/math/0111175}{arXiv:0111175}) \item [[Joshua Friedman]], \emph{The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations} (\href{http://arxiv.org/abs/math/0410067}{arXiv:math/0410067}) \item [[Joshua Friedman]], \emph{Regularized determinants of the Laplacian for cofinite Kleinian groups with finite-dimensional unitary representations}, Communications in Mathematical Physics (\href{http://arxiv.org/abs/math/0605288}{arXiv:math/0605288}) \item Colin Guillarmou, Sergiu Moroianu, Jinsung Park, \emph{Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds} (\href{http://arxiv.org/abs/0901.4082}{arXiv:0901.4082}) \end{itemize} [[!redirects Selberg zeta function of a Riemann surface]] \end{document}