\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Serre fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \textbf{Serre fibration} $\Leftarrow$ [[Hurewicz fibration]] $\Rightarrow$ [[Dold fibration]] $\Leftarrow$ [[shrinkable map]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{closure_properties}{Closure properties}\dotfill \pageref*{closure_properties} \linebreak \noindent\hyperlink{RelationToHurewiczFibrations}{Relation to Hurewicz fibrations}\dotfill \pageref*{RelationToHurewiczFibrations} \linebreak \noindent\hyperlink{long_exact_sequences_of_homotopy_groups}{Long exact sequences of homotopy groups}\dotfill \pageref*{long_exact_sequences_of_homotopy_groups} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{TopologicalGeneratingAcyclicCofibrations}\hypertarget{TopologicalGeneratingAcyclicCofibrations}{} Write \begin{displaymath} J_{Top} \coloneqq \left\{ D^n \stackrel{(id,\delta_0)}{\hookrightarrow} D^n \times I \right\}_{n \in \mathbb{N}} \;\subset Mor(Top) \end{displaymath} for the [[set]] of inclusions of the topological [[n-disks]], into their [[cylinder objects]] (the [[product topological space]] with the [[topological interval]]), along (for definiteness) the left endpoint inclusion. \end{defn} \begin{defn} \label{SerreFibration}\hypertarget{SerreFibration}{} A \textbf{Serre fibration} is a $J_{Top}$-[[injective morphism]], def. \ref{TopologicalGeneratingAcyclicCofibrations}, hence a [[continuous function]] $f \colon X \longrightarrow Y$ that has the [[right lifting property]] with respect to all inclusions of the form $(id,0) \colon D^n \hookrightarrow D^n \times I$ that include the standard topological [[n-disk]] into its standard [[cylinder object]]. \end{defn} I.e. $f$ is a Serre fibration if for every [[commuting square]] of [[continuous functions]] of the form \begin{displaymath} \itexarray{ D^n &\longrightarrow& X \\ {}^{\mathllap{(id,0)}}\downarrow && \downarrow^{\mathrlap{f}} \\ D^n \times I &\longrightarrow& Y } \end{displaymath} then there exists a continuous function $h \colon D^n \times I \to X$ such as to make a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ D^n &\longrightarrow& X \\ {}^{\mathllap{(id,0)}}\downarrow &{}^h\nearrow& \downarrow^{\mathrlap{f}} \\ D^n \times I &\longrightarrow& Y } \end{displaymath} \begin{remark} \label{}\hypertarget{}{} The class of Serre fibrations serves as the class of abstract [[fibrations]] in the [[classical model structure on topological spaces]] (whence ``Serre-Quillen model structure''). \end{remark} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{closure_properties}{}\subsubsection*{{Closure properties}}\label{closure_properties} \begin{prop} \label{SerreFibrationHasRightLiftingAgainstJTopRelativeCellComplexes}\hypertarget{SerreFibrationHasRightLiftingAgainstJTopRelativeCellComplexes}{} A Serre fibration has the right lifting property against all [[retracts]] of $J_{Top}$-[[relative cell complexes]] (def. \ref{TopologicalGeneratingAcyclicCofibrations}). \end{prop} \begin{proof} By general closure properties of [[projective and injective morphisms]], see there \href{injective+or+projective+morphism#ClosurePropertiesOfInjectiveAndProjectiveMorphisms}{this proposition} for details. \end{proof} \hypertarget{RelationToHurewiczFibrations}{}\subsubsection*{{Relation to Hurewicz fibrations}}\label{RelationToHurewiczFibrations} \begin{remark} \label{}\hypertarget{}{} The condition in def. \ref{SerreFibration} is part of the condition on a [[Hurewicz fibration]], hence every [[Hurewicz fibration]] is in particular a Serre fibration. \end{remark} The converse is false: \begin{example} \label{SerreFibrationsWhichAreNotHurewiczFibrations}\hypertarget{SerreFibrationsWhichAreNotHurewiczFibrations}{} \textbf{(Serre fibrations which are not Hurewicz fibrations)} An example of a generalized [[covering space]] which is a Serre fibration but not a Hurewicz fibration is given by Jeremy Brazas \href{https://mathoverflow.net/a/241597/381}{here}. \end{example} But under some regularity condition it does becomes true: \begin{prop} \label{SerreFibrationsBetweenCWComplexesAreHurewiczFibrations}\hypertarget{SerreFibrationsBetweenCWComplexesAreHurewiczFibrations}{} \textbf{(Serre fibrations of [[CW-complexes]] are [[Hurewicz fibrations]])} In the [[convenient category of topological spaces|convenient category]] of [[compactly generated topological spaces|compactly generated]] [[weakly Hausdorff topological spaces]]) a Serre fibration in which the total space and base space are both [[CW complexes]] is a [[Hurewicz fibration]]. (No relationship between the covering map and the CW structures is required.) \end{prop} This is due to (\hyperlink{SteinbergerWest84}{Steinberger-West 84}) with the corrected proof due to (\hyperlink{Cauty92}{Cauty 92}) (pointers via [[Peter May]] \href{https://mathoverflow.net/a/241611/381}{here}). Theorem-page at [[a Serre fibration between CW-complexes is a Hurewicz fibration]]. \hypertarget{long_exact_sequences_of_homotopy_groups}{}\subsubsection*{{Long exact sequences of homotopy groups}}\label{long_exact_sequences_of_homotopy_groups} Since Serre fibrations are the abstract fibrations in the Serre-[[classical model structure on topological spaces]], the following statement follows from general [[model category]] theory. But it may also be seen by direct inspection, as follows. \begin{lemma} \label{CylinderOverCWComplexIsJTopRelativeCellComplex}\hypertarget{CylinderOverCWComplexIsJTopRelativeCellComplex}{} For $X$ a finite [[CW-complex]], then its inclusion $X \overset{(id, \delta_0)}{\longrightarrow} X \times I$ into its standard [[cylinder object|cylinder]] is a $J_{Top}$-[[relative cell complex]] (def. \ref{TopologicalGeneratingAcyclicCofibrations}). \end{lemma} \begin{proof} First erect a cylinder over all 0-cells \begin{displaymath} \itexarray{ \underset{x \in X_0}{\coprod} D^0 &\longrightarrow& X \\ \downarrow &(po)& \downarrow \\ \underset{x\in X_0}{\coprod} D^1 &\longrightarrow& Y_1 } \,. \end{displaymath} Assume then that the cylinder over all $n$-cells of $X$ has been erected using attachment from $J_{Top}$. Then the union of any $(n+1)$-cell $\sigma$ of $X$ with the cylinder over its boundary is homeomorphic to $D^{n+1}$ and is like the cylinder over the cell ``with end and interior removed''. Hence via attaching along $D^{n+1} \to D^{n+1}\times I$ the cylinder over $\sigma$ is erected. \end{proof} \begin{prop} \label{SerreFibrationGivesExactSequenceOfHomotopyGroups}\hypertarget{SerreFibrationGivesExactSequenceOfHomotopyGroups}{} Let $f\colon X \longrightarrow Y$ be a [[Serre fibration]], def. \ref{SerreFibration}, let $y \colon \ast \to Y$ be any point and write \begin{displaymath} F_y \overset{\iota}{\hookrightarrow} X \overset{f}{\longrightarrow} Y \end{displaymath} for the [[fiber]] inclusion over that point. Then for every choice $x \colon \ast \to X$ of lift of the point $y$ through $f$, the induced sequence of [[homotopy groups]] \begin{displaymath} \pi_{\bullet}(F_y, x) \overset{\iota_\ast}{\longrightarrow} \pi_\bullet(X, x) \overset{f_\ast}{\longrightarrow} \pi_\bullet(Y) \end{displaymath} is [[exact sequence|exact]], in that the [[kernel]] of $f_\ast$ is canonically identified with the [[image]] of $\iota_\ast$: \begin{displaymath} ker(f_\ast) \simeq im(\iota_\ast) \,. \end{displaymath} \end{prop} \begin{proof} It is clear that the image of $\iota_\ast$ is in the kernel of $f_\ast$ (every sphere in $F_y\hookrightarrow X$ becomes constant on $y$, hence contractible, when sent forward to $Y$). For the converse, let $[\alpha]\in \pi_{\bullet}(X,x)$ be represented by some $\alpha \colon S^{n-1} \to X$. Assume that $[\alpha]$ is in the kernel of $f_\ast$. This means equivalently that $\alpha$ fits into a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ S^{n-1} &\overset{\alpha}{\longrightarrow}& X \\ \downarrow && \downarrow^{\mathrlap{f}} \\ D^n &\overset{\kappa}{\longrightarrow}& Y } \,, \end{displaymath} where $\kappa$ is the contracting homotopy witnessing that $f_\ast[\alpha] = 0$. Now since $x$ is a lift of $y$, there exists a [[left homotopy]] \begin{displaymath} \eta \;\colon\; \kappa \Rightarrow const_y \end{displaymath} as follows: \begin{displaymath} \itexarray{ && S^{n-1} &\overset{\alpha}{\longrightarrow}& X \\ && {}^{\mathllap{\iota_n}}\downarrow && \downarrow^{\mathrlap{f}} \\ && D^n &\overset{\kappa}{\longrightarrow}& Y \\ && \downarrow^{\mathrlap{(id,1)}} && \downarrow^{\mathrlap{id}} \\ D^n &\overset{(id,0)}{\longrightarrow}& D^n \times I &\overset{\eta}{\longrightarrow}& Y \\ \downarrow && && \downarrow \\ \ast && \overset{y}{\longrightarrow} && Y } \end{displaymath} (for instance: regard $D^n$ as embedded in $\mathbb{R}^n$ such that $0 \in \mathbb{R}^n$ is identified with the basepoint on the boundary of $D^n$ and set $\eta(\vec v,t) \coloneqq \kappa(t \vec v)$). The [[pasting]] of the top two squares that have appeared this way is equivalent to the following commuting square \begin{displaymath} \itexarray{ S^{n-1} &\longrightarrow& &\overset{\alpha}{\longrightarrow}& X \\ {}^{\mathllap{(id,1)}}\downarrow && && \downarrow^{\mathrlap{f}} \\ S^{n-1} \times I &\overset{(\iota_n, id)}{\longrightarrow}& D^n \times I &\overset{\eta}{\longrightarrow}& Y } \,. \end{displaymath} Because $f$ is a [[Serre fibration]] and by lemma \ref{CylinderOverCWComplexIsJTopRelativeCellComplex} and prop. \ref{SerreFibrationHasRightLiftingAgainstJTopRelativeCellComplexes}, this has a [[lift]] \begin{displaymath} \tilde \eta \;\colon\; S^{n-1} \times I \longrightarrow X \,. \end{displaymath} Notice that $\tilde \eta$ is a basepoint preserving [[left homotopy]] from $\alpha = \tilde \eta|_1$ to some $\alpha' \coloneqq \tilde \eta|_0$. Being homotopic, they represent the same element of $\pi_{n-1}(X,x)$: \begin{displaymath} [\alpha'] = [\alpha] \,. \end{displaymath} But the new representative $\alpha'$ has the special property that its image in $Y$ is not just trivializable, but trivialized: combining $\tilde \eta$ with the previous diagram shows that it sits in the following commuting diagram \begin{displaymath} \itexarray{ \alpha' \colon & S^{n-1} &\overset{(id,0)}{\longrightarrow}& S^{n-1}\times I &\overset{\tilde \eta}{\longrightarrow}& X \\ & \downarrow^{\iota_n} && \downarrow^{\mathrlap{(\iota_n,id)}} && \downarrow^{\mathrlap{f}} \\ & D^n &\overset{(id,0)}{\longrightarrow}& D^n \times I &\overset{\eta}{\longrightarrow}& Y \\ & \downarrow && && \downarrow \\ & \ast && \overset{y}{\longrightarrow} && Y } \,. \end{displaymath} The commutativity of the outer square says that $f_\ast \alpha'$ is constant, hence that $\alpha'$ is entirely contained in the fiber $F_y$. Said more abstractly, the [[universal property]] of [[fibers]] gives that $\alpha'$ factors through $F_y\overset{\iota}{\hookrightarrow} X$, hence that $[\alpha'] = [\alpha]$ is in the image of $\iota_\ast$. \end{proof} (\ldots{}) [[long exact sequence of homotopy groups]] (\ldots{}) \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} Every locally trivial topological [[fiber bundle]] is a Serre fibration. In particular, \begin{example} \label{CoveringSpaceIsSerreFibration}\hypertarget{CoveringSpaceIsSerreFibration}{} \textbf{([[covering space]] projection is Serre fibration)} Every [[covering space]] projection is a Serre fibration, in fact a [[Hurewicz fibration]] (by \href{covering+space#HomotopyLiftingPropertyOfCoveringSpaces}{this prop.}). \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Serre spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item M. Steinberger and J. West, \emph{Covering homotopy properties of maps between CW complexes or ANRs}, Proc. Amer. Math. Soc. 92 (1984), 573-577. \item R. Cauty, \emph{Sur les ouverts des CW-complexes et les fibr\'e{}s de Serre}, Colloquy Math. 63 (1992), 1--7 \end{itemize} [[!redirects Serre fibrations]] \end{document}