\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Serre spectral sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_ordinary_cohomology}{In ordinary cohomology}\dotfill \pageref*{in_ordinary_cohomology} \linebreak \noindent\hyperlink{in_generalized_cohomology}{In generalized cohomology}\dotfill \pageref*{in_generalized_cohomology} \linebreak \noindent\hyperlink{InRelativeCohomology}{In relative cohomology}\dotfill \pageref*{InRelativeCohomology} \linebreak \noindent\hyperlink{in_equivariant_cohomology}{In equivariant cohomology}\dotfill \pageref*{in_equivariant_cohomology} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{consequences}{Consequences}\dotfill \pageref*{consequences} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_equivariant_cohomology_2}{In equivariant cohomology}\dotfill \pageref*{in_equivariant_cohomology_2} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{in_ordinary_cohomology}{}\subsubsection*{{In ordinary cohomology}}\label{in_ordinary_cohomology} The \emph{Serre spectral sequence} or \emph{Leray-Serre spectral sequence} is a [[spectral sequence]] for computation of [[ordinary cohomology]] ([[ordinary homology]]) of [[topological spaces]] in a [[Serre fibration|Serre]]-[[fiber sequence]] of [[topological spaces]]. Given a [[homotopy fiber sequence]] \begin{displaymath} \itexarray{ F &\longrightarrow& E \\ && \downarrow^{\mathrlap{p}} \\ && X } \end{displaymath} over a simply connected space $X$, then the corresponding cohomology Serre spectral sequence looks like \begin{displaymath} E_2^{p,q}= H^p(X, H^q(F)) \Rightarrow H^{p+q}(E) \,. \end{displaymath} \hypertarget{in_generalized_cohomology}{}\subsubsection*{{In generalized cohomology}}\label{in_generalized_cohomology} The generalization of this from [[ordinary cohomology]] to [[generalized (Eilenberg-Steenrod) cohomology]] is the \emph{[[Atiyah-Hirzebruch spectral sequence]]}, see there for details. \hypertarget{InRelativeCohomology}{}\subsubsection*{{In relative cohomology}}\label{InRelativeCohomology} There are two kinds of \textbf{relative Serre spectral sequences}. For $F \to E \to X$ as above and $A \hookrightarrow X$ a subspace, the induced restriction of the fibration \begin{displaymath} \itexarray{ F & \simeq & F \\ \downarrow && \downarrow \\ p^{-1}(A) &\longrightarrow& E \\ \downarrow && \downarrow^{\mathrlap{p}} \\ A &\hookrightarrow& X } \end{displaymath} induces a spectral sequence in [[relative cohomology]] of the base space of the form \begin{displaymath} E_2^{p,q} = H^p(X,A; H^q(F)) \;\Rightarrow\; H^\bullet(E, p^{-1}(A)) \,. \end{displaymath} (e.g. \hyperlink{Davis91}{Davis 91, theorem 9.33}) Conversely, for \begin{displaymath} \itexarray{ F' & \hookrightarrow & F \\ \downarrow && \downarrow \\ E' &\hookrightarrow& E \\ \downarrow && \downarrow^{\mathrlap{p}} \\ X &\hookrightarrow& X } \end{displaymath} a sub-fibration over the same base, then this induces a spectral sequence for [[relative cohomology]] of the the total space in terms of ordinary cohomology with coefficients in the relative cohomology of the fibers: \begin{displaymath} E^{p,q}_2 = H^p(X; H^q(F,F')) \;\Rightarrow\; H^\bullet(E,E') \,. \end{displaymath} (e.g. \hyperlink{Kochmann96}{Kochmann 96, theorem 2.6.3}, \hyperlink{Davis91}{Davis 91, theorem 9.34}) \hypertarget{in_equivariant_cohomology}{}\subsubsection*{{In equivariant cohomology}}\label{in_equivariant_cohomology} There is also a generalization to [[equivariant cohomology]]: for \href{Mackey+functor#Cohomology}{cohomology with coefficients in a Mackey functor} with[[RO(G)-grading]] for [[representation spheres]] $S^V$, then for $E \to X$ an $F$-fibration of [[topological G-spaces]] and for $A$ any $G$-[[Mackey functor]], the equivariant Serre spectral sequence looks like (\hyperlink{Kronholm10}{Kronholm 10, theorem 3.1}): \begin{displaymath} E_2^{p,q} = H^p(X, H^{V+q}(F,A)) \,\Rightarrow\, H^{V+p+q}(E,A) \,, \end{displaymath} where on the left in the $E_2$-page we have [[ordinary cohomology]] with [[coefficients]] in the genuine equivariant cohomology groups of the fiber. \hypertarget{details}{}\subsection*{{Details}}\label{details} For details on the plain Serre spectral sequence see at \emph{[[Atiyah-Hirzebruch spectral sequence]]} and take $E = H R$ to be ordinary cohomology. \hypertarget{consequences}{}\subsection*{{Consequences}}\label{consequences} \begin{itemize}% \item [[Serre long exact sequence]] \item [[Gysin sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original article is \begin{itemize}% \item [[Jean-Pierre Serre]], \emph{Homologie singuli\'e{}re des espaces fibr\'e{}s} Applications, Ann. of Math. 54 (1951), \end{itemize} Textbook accounts include \begin{itemize}% \item [[Alan Hatcher]], \emph{\href{http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html}{Spectral sequences in algebraic topology}} \emph{I: The Serre spectral sequence} (\href{http://www.math.cornell.edu/~hatcher/SSAT/SSch1.pdf}{pdf}) \item [[Stanley Kochmann]], section 2.2. of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item Davis, \emph{Lecture notes in algebraic topology}, 1991 \end{itemize} Lecture notes etc. includes \begin{itemize}% \item [[Greg Friedman]], \emph{Some extremely brief notes on the Leray spectral sequence} (\href{http://faculty.tcu.edu/richardson/Seminars/Gregspecseq.pdf}{pdf}) \end{itemize} Discussion in [[homotopy type theory]] includes \begin{itemize}% \item [[Mike Shulman]], \emph{\href{http://homotopytypetheory.org/2013/08/08/spectral-sequences/}{Spectral Sequences}}, 2013 \end{itemize} and implementation in [[Lean]] is in \begin{itemize}% \item [[Floris van Doorn]], [[Egbert Rijke]], [[Ulrik Buchholtz]], [[Favonia]], [[Steve Awodey]], [[Jeremy Avigad]], [[Mike Shulman]], [[Jonas Frey]], \emph{Spectral} (\href{https://github.com/cmu-phil/Spectral}{github.com/cmu-phil/Spectral}) \end{itemize} \hypertarget{in_equivariant_cohomology_2}{}\subsubsection*{{In equivariant cohomology}}\label{in_equivariant_cohomology_2} In [[equivariant cohomology]], for [[Bredon cohomology]]: \begin{itemize}% \item [[Ieke Moerdijk]], J.-A. Svensson, \emph{The Equivariant Serre Spectral Sequence}, Proceedings of the American Mathematical Society Vol. 118, No. 1 (May, 1993), pp. 263-278 (\href{http://www.jstor.org/stable/2160037}{JSTOR}) \end{itemize} and for genuine equivariant cohomology, i.e. for [[RO(G)-grading|RO(G)]]-graded \href{Mackey+functor#Cohomology}{cohomology with coefficients in a Mackey functor}: \begin{itemize}% \item [[William Kronholm]], \emph{The $RO(G)$-graded Serre spectral sequence}, Homology Homotopy Appl. Volume 12, Number 1 (2010), 75-92. (\href{http://www.swarthmore.edu/NatSci/wkronho1/serre.pdf}{pdf}, \href{https://projecteuclid.org/euclid.hha/1296223823}{Euclid}) \end{itemize} See also \begin{itemize}% \item [[Megan Shulman]], \emph{Equivariant Spectral Sequences for Local Coefficients} (\href{http://arxiv.org/abs/1005.0379}{arXiv:1005.0379}) \end{itemize} [[!redirects Serre spectral sequences]] [[!redirects Leray-Serre spectral sequence]] [[!redirects Leray-Serre spectral sequences]] \end{document}