\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sheaves in Geometry and Logic} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] This entry collects hyperlinks related to the textbook \begin{itemize}% \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{Sheaves in Geometry and Logic -- A first introduction to topos theory} Springer Verlag, 1992 (\href{https://link.springer.com/book/10.1007/978-1-4612-0927-0}{doi:10.1007/978-1-4612-0927-0}) \end{itemize} on [[sheaf and topos theory]] and its application in [[categorical logic]]. For a similar link lists see also \begin{itemize}% \item \emph{[[Categories and Sheaves]]} \item \emph{[[Sketches of an Elephant]]} \end{itemize} \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{categorical_preliminaries}{Categorical Preliminaries}\dotfill \pageref*{categorical_preliminaries} \linebreak \noindent\hyperlink{i_categories_of_functors}{I Categories of Functors}\dotfill \pageref*{i_categories_of_functors} \linebreak \noindent\hyperlink{ii_sheaves_of_sets}{II Sheaves of Sets}\dotfill \pageref*{ii_sheaves_of_sets} \linebreak \noindent\hyperlink{iii_grothendieck_topologies_and_sheaves}{III Grothendieck Topologies and Sheaves}\dotfill \pageref*{iii_grothendieck_topologies_and_sheaves} \linebreak \noindent\hyperlink{iv_first_properties_of_elementary_topoi}{IV First Properties of Elementary Topoi}\dotfill \pageref*{iv_first_properties_of_elementary_topoi} \linebreak \noindent\hyperlink{1_definition_of_a_topos}{1. Definition of a topos}\dotfill \pageref*{1_definition_of_a_topos} \linebreak \noindent\hyperlink{2_the_construction_of_exponentials}{2. The construction of exponentials}\dotfill \pageref*{2_the_construction_of_exponentials} \linebreak \noindent\hyperlink{3_direct_image}{3. Direct image}\dotfill \pageref*{3_direct_image} \linebreak \noindent\hyperlink{4_monads_and_becks_theorem}{4. Monads and Beck's theorem}\dotfill \pageref*{4_monads_and_becks_theorem} \linebreak \noindent\hyperlink{5_the_construction_of_colimits}{5. The construction of colimits}\dotfill \pageref*{5_the_construction_of_colimits} \linebreak \noindent\hyperlink{6_factorization_and_images}{6. Factorization and images}\dotfill \pageref*{6_factorization_and_images} \linebreak \noindent\hyperlink{7_the_slice_category_as_a_topos}{7. The slice category as a topos}\dotfill \pageref*{7_the_slice_category_as_a_topos} \linebreak \noindent\hyperlink{8_lattice_and_heyting_algebra_objects_in_a_topos}{8. Lattice and Heyting algebra objects in a topos}\dotfill \pageref*{8_lattice_and_heyting_algebra_objects_in_a_topos} \linebreak \noindent\hyperlink{9_the_beckchevalley_condition}{9. The Beck-Chevalley condition}\dotfill \pageref*{9_the_beckchevalley_condition} \linebreak \noindent\hyperlink{10_injective_objects}{10. Injective objects}\dotfill \pageref*{10_injective_objects} \linebreak \noindent\hyperlink{v_basic_constructions_of_topoi}{V Basic Constructions of Topoi}\dotfill \pageref*{v_basic_constructions_of_topoi} \linebreak \noindent\hyperlink{1_lawveretierney_topologies}{1. Lawvere-Tierney topologies}\dotfill \pageref*{1_lawveretierney_topologies} \linebreak \noindent\hyperlink{2_sheaves}{2. Sheaves}\dotfill \pageref*{2_sheaves} \linebreak \noindent\hyperlink{3_the_associated_sheaf_functor}{3. The associated sheaf functor}\dotfill \pageref*{3_the_associated_sheaf_functor} \linebreak \noindent\hyperlink{4_lawveretierney_subsumes_grothendieck}{4. Lawvere-Tierney subsumes Grothendieck}\dotfill \pageref*{4_lawveretierney_subsumes_grothendieck} \linebreak \noindent\hyperlink{5_internal_versus_external}{5. Internal versus external}\dotfill \pageref*{5_internal_versus_external} \linebreak \noindent\hyperlink{6_group_actions}{6. Group actions}\dotfill \pageref*{6_group_actions} \linebreak \noindent\hyperlink{7_category_actions}{7. Category actions}\dotfill \pageref*{7_category_actions} \linebreak \noindent\hyperlink{8_the_topos_of_coalgebras}{8. The topos of coalgebras}\dotfill \pageref*{8_the_topos_of_coalgebras} \linebreak \noindent\hyperlink{9_the_filterquotient_construction}{9. The filter-quotient construction}\dotfill \pageref*{9_the_filterquotient_construction} \linebreak \noindent\hyperlink{vi_topoi_and_logic}{VI Topoi and Logic}\dotfill \pageref*{vi_topoi_and_logic} \linebreak \noindent\hyperlink{vii_geometric_morphisms}{VII Geometric Morphisms}\dotfill \pageref*{vii_geometric_morphisms} \linebreak \noindent\hyperlink{vii_1_geometric_morphisms_and_basic_examples}{VII 1. Geometric Morphisms and Basic Examples}\dotfill \pageref*{vii_1_geometric_morphisms_and_basic_examples} \linebreak \noindent\hyperlink{vii_2_tensor_products}{VII 2. Tensor products}\dotfill \pageref*{vii_2_tensor_products} \linebreak \noindent\hyperlink{vii_3_group_actions}{VII 3. Group actions}\dotfill \pageref*{vii_3_group_actions} \linebreak \noindent\hyperlink{vii_4_embeddings_and_surjections}{VII 4. Embeddings and surjections}\dotfill \pageref*{vii_4_embeddings_and_surjections} \linebreak \noindent\hyperlink{vii_5_points}{VII 5. Points}\dotfill \pageref*{vii_5_points} \linebreak \noindent\hyperlink{vii_6_filtering_functors}{VII 6. Filtering functors}\dotfill \pageref*{vii_6_filtering_functors} \linebreak \noindent\hyperlink{vii_7_morphisms_into_grothendieck_topoi}{VII 7. Morphisms into Grothendieck Topoi}\dotfill \pageref*{vii_7_morphisms_into_grothendieck_topoi} \linebreak \noindent\hyperlink{vii_8_filtering_functors_into_a_topos}{VII 8. Filtering functors into a topos}\dotfill \pageref*{vii_8_filtering_functors_into_a_topos} \linebreak \noindent\hyperlink{vii_9_geometric_morphisms_as_filtering_functors}{VII 9. Geometric morphisms as filtering functors}\dotfill \pageref*{vii_9_geometric_morphisms_as_filtering_functors} \linebreak \noindent\hyperlink{vii_10_morphisms_between_sites}{VII 10. Morphisms between sites}\dotfill \pageref*{vii_10_morphisms_between_sites} \linebreak \noindent\hyperlink{viii_classifying_topoi}{VIII Classifying Topoi}\dotfill \pageref*{viii_classifying_topoi} \linebreak \noindent\hyperlink{ix_localic_topoi}{IX Localic Topoi}\dotfill \pageref*{ix_localic_topoi} \linebreak \noindent\hyperlink{geometric_logic_and_classifying_topoi}{Geometric Logic and Classifying Topoi}\dotfill \pageref*{geometric_logic_and_classifying_topoi} \linebreak \noindent\hyperlink{appendix_sites_for_topoi}{Appendix: Sites for Topoi}\dotfill \pageref*{appendix_sites_for_topoi} \linebreak \hypertarget{categorical_preliminaries}{}\subsection*{{Categorical Preliminaries}}\label{categorical_preliminaries} \hypertarget{i_categories_of_functors}{}\subsection*{{I Categories of Functors}}\label{i_categories_of_functors} \begin{itemize}% \item [[presheaf]] \item [[category of presheaves]] \end{itemize} \hypertarget{ii_sheaves_of_sets}{}\subsection*{{II Sheaves of Sets}}\label{ii_sheaves_of_sets} \begin{itemize}% \item [[category of open subsets]] \item [[sheaf]] \item [[global section]]/[[constant sheaf]] \end{itemize} \hypertarget{iii_grothendieck_topologies_and_sheaves}{}\subsection*{{III Grothendieck Topologies and Sheaves}}\label{iii_grothendieck_topologies_and_sheaves} \begin{itemize}% \item [[presheaf]] \item [[site]] \begin{itemize}% \item [[coverage]] \item [[basis for a topology]] \item [[Grothendieck topology]] \item [[sheaf]] \begin{itemize}% \item [[sheafification]] \item [[direct image]] \item [[inverse image]] \item [[restriction and extension of sheaves]] \item [[stalk]] \end{itemize} \item [[category of sheaves]] \end{itemize} \item [[Grothendieck topos]] \end{itemize} \hypertarget{iv_first_properties_of_elementary_topoi}{}\subsection*{{IV First Properties of Elementary Topoi}}\label{iv_first_properties_of_elementary_topoi} \hypertarget{1_definition_of_a_topos}{}\subsubsection*{{1. Definition of a topos}}\label{1_definition_of_a_topos} \begin{itemize}% \item [[subobject classifier]] \begin{itemize}% \item [[subobject]] \end{itemize} \item [[topos]] \begin{itemize}% \item [[Grothendieck topos]] \item [[well-pointed topos]] \item [[Boolean topos]] \item [[pretopos]] \item [[universe in a topos]] \end{itemize} \item [[point of a topos]] \item [[fundamental group of a topos]] \item [[dependent product]] \end{itemize} \hypertarget{2_the_construction_of_exponentials}{}\subsubsection*{{2. The construction of exponentials}}\label{2_the_construction_of_exponentials} \begin{itemize}% \item [[exponential object]] \end{itemize} \hypertarget{3_direct_image}{}\subsubsection*{{3. Direct image}}\label{3_direct_image} \begin{itemize}% \item [[direct image]] \end{itemize} \hypertarget{4_monads_and_becks_theorem}{}\subsubsection*{{4. Monads and Beck's theorem}}\label{4_monads_and_becks_theorem} \begin{itemize}% \item [[monad]] \item [[Eilenberg-Moore category]] \item [[monadic functor]] \item [[monadicity theorem]] \end{itemize} \hypertarget{5_the_construction_of_colimits}{}\subsubsection*{{5. The construction of colimits}}\label{5_the_construction_of_colimits} \begin{itemize}% \item [[quotient type]] \end{itemize} \hypertarget{6_factorization_and_images}{}\subsubsection*{{6. Factorization and images}}\label{6_factorization_and_images} \begin{itemize}% \item [[image]] \end{itemize} \hypertarget{7_the_slice_category_as_a_topos}{}\subsubsection*{{7. The slice category as a topos}}\label{7_the_slice_category_as_a_topos} \begin{itemize}% \item [[over-topos]] \end{itemize} \hypertarget{8_lattice_and_heyting_algebra_objects_in_a_topos}{}\subsubsection*{{8. Lattice and Heyting algebra objects in a topos}}\label{8_lattice_and_heyting_algebra_objects_in_a_topos} \begin{itemize}% \item [[lattice]] \item [[Heyting algebra]] \end{itemize} \hypertarget{9_the_beckchevalley_condition}{}\subsubsection*{{9. The Beck-Chevalley condition}}\label{9_the_beckchevalley_condition} \begin{itemize}% \item [[Beck-Chevalley condition]] \end{itemize} \hypertarget{10_injective_objects}{}\subsubsection*{{10. Injective objects}}\label{10_injective_objects} \begin{itemize}% \item [[injective objects]] \end{itemize} \hypertarget{v_basic_constructions_of_topoi}{}\subsection*{{V Basic Constructions of Topoi}}\label{v_basic_constructions_of_topoi} \hypertarget{1_lawveretierney_topologies}{}\subsubsection*{{1. Lawvere-Tierney topologies}}\label{1_lawveretierney_topologies} \begin{itemize}% \item [[Lawvere-Tierney topology]] \end{itemize} \hypertarget{2_sheaves}{}\subsubsection*{{2. Sheaves}}\label{2_sheaves} \begin{itemize}% \item [[dense monomorphism]] \item [[sheaf]] \end{itemize} \hypertarget{3_the_associated_sheaf_functor}{}\subsubsection*{{3. The associated sheaf functor}}\label{3_the_associated_sheaf_functor} \begin{itemize}% \item [[sheafification]] \end{itemize} \hypertarget{4_lawveretierney_subsumes_grothendieck}{}\subsubsection*{{4. Lawvere-Tierney subsumes Grothendieck}}\label{4_lawveretierney_subsumes_grothendieck} \begin{itemize}% \item [[Grothendieck topology]] \end{itemize} \hypertarget{5_internal_versus_external}{}\subsubsection*{{5. Internal versus external}}\label{5_internal_versus_external} \hypertarget{6_group_actions}{}\subsubsection*{{6. Group actions}}\label{6_group_actions} \begin{itemize}% \item [[group]] \item [[action]] \item [[permutation representation]] \end{itemize} \hypertarget{7_category_actions}{}\subsubsection*{{7. Category actions}}\label{7_category_actions} \hypertarget{8_the_topos_of_coalgebras}{}\subsubsection*{{8. The topos of coalgebras}}\label{8_the_topos_of_coalgebras} \begin{itemize}% \item [[comonad]] \item [[topos of coalgebras]] \end{itemize} \hypertarget{9_the_filterquotient_construction}{}\subsubsection*{{9. The filter-quotient construction}}\label{9_the_filterquotient_construction} \hypertarget{vi_topoi_and_logic}{}\subsection*{{VI Topoi and Logic}}\label{vi_topoi_and_logic} \begin{itemize}% \item [[ETCS]] \item [[continuum hypothesis]] \item [[logic]] \item [[foundations and logic]] \begin{itemize}% \item [[internal logic]] \begin{itemize}% \item [[intuitionistic logic]] \item [[classical logic]] \item [[paraconsistent logic]] \item [[coherent logic]] \end{itemize} \end{itemize} \item [[Boolean algebra]] \item [[Heyting algebra]] \end{itemize} \hypertarget{vii_geometric_morphisms}{}\subsection*{{VII Geometric Morphisms}}\label{vii_geometric_morphisms} \hypertarget{vii_1_geometric_morphisms_and_basic_examples}{}\subsubsection*{{VII 1. Geometric Morphisms and Basic Examples}}\label{vii_1_geometric_morphisms_and_basic_examples} \begin{itemize}% \item [[geometric morphism]] \begin{itemize}% \item [[direct image]], [[inverse image]] \end{itemize} \end{itemize} Examples: \begin{itemize}% \item [[continuous function]] \item [[base change geometric morphism]] \item [[sheafification]], [[geometric embedding]] \item [[global section geometric morphism]] \end{itemize} \hypertarget{vii_2_tensor_products}{}\subsubsection*{{VII 2. Tensor products}}\label{vii_2_tensor_products} \begin{itemize}% \item [[Kan extension]] \end{itemize} \hypertarget{vii_3_group_actions}{}\subsubsection*{{VII 3. Group actions}}\label{vii_3_group_actions} \begin{itemize}% \item [[group object]] \end{itemize} \hypertarget{vii_4_embeddings_and_surjections}{}\subsubsection*{{VII 4. Embeddings and surjections}}\label{vii_4_embeddings_and_surjections} \begin{itemize}% \item [[geometric embedding]] \item [[geometric surjection]] \item [[geometric surjection/embedding factorization]] \end{itemize} \hypertarget{vii_5_points}{}\subsubsection*{{VII 5. Points}}\label{vii_5_points} \begin{itemize}% \item [[point of a topos]] \item [[stalk]] \end{itemize} \hypertarget{vii_6_filtering_functors}{}\subsubsection*{{VII 6. Filtering functors}}\label{vii_6_filtering_functors} \hypertarget{vii_7_morphisms_into_grothendieck_topoi}{}\subsubsection*{{VII 7. Morphisms into Grothendieck Topoi}}\label{vii_7_morphisms_into_grothendieck_topoi} \hypertarget{vii_8_filtering_functors_into_a_topos}{}\subsubsection*{{VII 8. Filtering functors into a topos}}\label{vii_8_filtering_functors_into_a_topos} \hypertarget{vii_9_geometric_morphisms_as_filtering_functors}{}\subsubsection*{{VII 9. Geometric morphisms as filtering functors}}\label{vii_9_geometric_morphisms_as_filtering_functors} \hypertarget{vii_10_morphisms_between_sites}{}\subsubsection*{{VII 10. Morphisms between sites}}\label{vii_10_morphisms_between_sites} \begin{itemize}% \item [[morphism of sites]] \item [[covering lifting property]] \end{itemize} \hypertarget{viii_classifying_topoi}{}\subsection*{{VIII Classifying Topoi}}\label{viii_classifying_topoi} \begin{itemize}% \item [[classifying topos]] \end{itemize} \hypertarget{ix_localic_topoi}{}\subsection*{{IX Localic Topoi}}\label{ix_localic_topoi} \begin{itemize}% \item [[locale]] \item [[localic topos]] \end{itemize} \hypertarget{geometric_logic_and_classifying_topoi}{}\subsection*{{Geometric Logic and Classifying Topoi}}\label{geometric_logic_and_classifying_topoi} \begin{itemize}% \item [[classifying topos]] \end{itemize} \hypertarget{appendix_sites_for_topoi}{}\subsection*{{Appendix: Sites for Topoi}}\label{appendix_sites_for_topoi} \begin{itemize}% \item [[Giraud's theorem]] \end{itemize} category: reference [[!redirects Sheaves in geometry and logic]] [[!redirects sheaves in geometry and logic]] [[!redirects Mac Lane-Moerdijk]] \end{document}