\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sierpinski topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{presentation_and_homotopy_type_theory}{Presentation and Homotopy type theory}\dotfill \pageref*{presentation_and_homotopy_type_theory} \linebreak \noindent\hyperlink{Cohesion}{Connectedness, locality, cohesion}\dotfill \pageref*{Cohesion} \linebreak \noindent\hyperlink{cohesive_structures}{Cohesive structures}\dotfill \pageref*{cohesive_structures} \linebreak \noindent\hyperlink{DifferentialCohesion}{Differential cohesion}\dotfill \pageref*{DifferentialCohesion} \linebreak \noindent\hyperlink{AsAClassifyingTopos}{As a classifying topos}\dotfill \pageref*{AsAClassifyingTopos} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} The \textbf{Sierpinski [[topos]]} is the [[arrow category]] of [[Set]]. Equivalently, this is the [[category of presheaves]] over the [[interval category]] $\Delta[1] := \mathbf{2} = \{0 \to 1\}$, or equivalently the [[category of sheaves]] over the [[Sierpinski space]] $Sierp$ \begin{displaymath} Sh(Sierp) \simeq PSh(\Delta[1]) \simeq Set^{\Delta[1]} \,. \end{displaymath} Yet another description is that it is the [[Freyd cover]] of \textbf{Set}. \end{defn} \begin{defn} \label{}\hypertarget{}{} Similarly, the \textbf{Sierpinski [[(∞,1)-topos]]} is the [[arrow (∞,1)-category]] $\infty Grpd^{\Delta[1]}$ of [[∞Grpd]]. Equivalently this is the [[(∞,1)-category of (∞,1)-presheaves]] on $\Delta[1]$ and equivalently the [[(∞,1)-category of (∞,1)-sheaves]] on $Sierp$: \begin{displaymath} Sh_{(\infty,1)}(Sierp) \simeq PSh_{(\infty,1)}(\Delta[1]) \simeq \infty Grpd^{\Delta[1]} \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{presentation_and_homotopy_type_theory}{}\subsubsection*{{Presentation and Homotopy type theory}}\label{presentation_and_homotopy_type_theory} Being a [[(∞,1)-category of (∞,1)-functors]], the Sierpinski [[(∞,1)-topos]] is [[presentable (∞,1)-category|presented]] by any of the [[model structure on simplicial presheaves]] $[\Delta[1], sSet]$. Specifically the [[Reedy model structure]] of [[simplicial presheaves]] on the [[interval category]] $[\Delta[1], sSet]_{Reedy}$ provides a [[univalence|univalent]] model for [[homotopy type theory]] in the Sierpinski $(\infty,1)$-topos (\hyperlink{Shulman}{Shulman}) \hypertarget{Cohesion}{}\subsubsection*{{Connectedness, locality, cohesion}}\label{Cohesion} We discuss the connectedness, locality and cohesion of the Sierpinski topos. We do so relative to an arbitrary [[base topos]]/[[base (∞,1)-topos]] $\mathbf{H}$, hence regard the [[global section geometric morphism]] \begin{displaymath} \mathbf{H}^I \to \mathbf{H} \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} The Sierpinski topos is a \emph{[[cohesive topos]].} The Sierpinski $(\infty,1)$-topos is a [[cohesive (∞,1)-topos]]. \begin{displaymath} (\Pi \dashv \Disc \dashv \Gamma \dashv coDisc) : \mathbf{H}^I \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\leftarrow}}}} \mathbf{H} \,. \end{displaymath} \end{prop} \begin{proof} For the first statement, see the detailed discussion at \emph{[[cohesive topos]]} \emph{\href{cohesive+topos#FamiliesOfSets}{here}}. For the second statement, see the discussion at \emph{[[cohesive (∞,1)-topos]]} \emph{\href{cohesive+%28infinity%2C1%29-topos#CohesiveDiagramToposes}{here}}. \end{proof} \begin{remark} \label{}\hypertarget{}{} The fact that the Sierpienski $(\infty,1)$-topos is, therefore, in particular \begin{enumerate}% \item a [[locally ∞-connected (∞,1)-topos]]; \item an [[∞-connected (∞,1)-topos]]; \item a [[local (∞,1)-topos]] \end{enumerate} all follow directly from the fact that it is the image, under [[localic reflection]], of the [[Sierpinski space]] (hence that it is [[n-localic (∞,1)-topos|0-localic]], its [[n-truncated|(-1)-truncation]] being the [[frame]] of opens of the Sierpinski space). That space $Sierp$, in turn, \begin{enumerate}% \item is a [[contractible topological space]]; \item a [[locally contractible topological space]]. \item has a [[focal point]] \end{enumerate} which implies the corresponding three properties of the Sierpinski $\infty$-topos above. \end{remark} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[cohesive (∞,1)-topos]]} every such may be thought of as a \emph{fat point}, the abstract \emph{cohesive blob}. In this case, this fat point \emph{is} the Sierpinski space. This space can be thought of as being the abstract ``point with open neighbourhood''. \end{remark} \begin{remark} \label{}\hypertarget{}{} Accordingly, the objects of the Sierpinski $(\infty,1)$-topos may be thought of as [[∞-groupoids]] (relative to $\mathbf{H}$) equipped with the notion of [[cohesive (∞,1)-topos|cohesion]] modeled on this: they are [[bundles]] $[P \to X]$ of [[∞-groupoids]] whose [[fibers]] are regarded as being \href{cohesive+%28infinity%2C1%29-topos+--+structures#Homotopy}{geometrically contractible}, in that \begin{displaymath} \Pi([P \to X]) \simeq X \end{displaymath} and so in particular \begin{displaymath} \Pi([Q \to *]) \simeq * \,. \end{displaymath} Hence these objects are [[discrete ∞-groupoids]] $X$, to each of whose points $x : * \to X$ may be attached a contractible cohesive blob with inner structure given by the $\infty$-groupoid $P_x := P \times_X \{x\}$. Accordingly, the \emph{underlying} $\infty$-groupoid of such a bundle $[P \to X]$ is the union \begin{displaymath} \Gamma([P \to X]) \simeq P \end{displaymath} of the discrete base space and the inner structure of the fibers. The [[discrete object]] in the Sierpinski $(\infty,1)$-topos on an object $X \in \mathbf{H}$ is the bundle \begin{displaymath} Disc(X) \simeq [X \stackrel{id}{\to} X] \end{displaymath} which is $X$ with ``no cohesive blobs attached''. Finally the [[codiscrete object]] in the Sierpinski $(\infty,1)$-topos on an object $X \in \mathbf{H}$ is \begin{displaymath} coDisc(X) \simeq [X \to *] \,, \end{displaymath} the structure where all of $X$ is regarded as one single contractible cohesive ball. The $(\Pi \dashv Disc)$-[[unit |adjunction unit]] \begin{displaymath} i : id \to Disc \Pi \end{displaymath} on $[P \to X]$ is \begin{displaymath} \itexarray{ \mathllap{[}P &\to& X\mathrlap{]} \\ \downarrow && \downarrow \\ \mathllap{[}X &\to& X\mathrlap{]} } \,. \end{displaymath} The $(Disc \dashv \Gamma)$-counit $Disc \Gamma \to id$ on $[P \to X]$ is \begin{displaymath} \itexarray{ \mathllap{[}P &\to& P\mathrlap{]} \\ \downarrow && \downarrow \\ \mathllap{[}P &\to& X\mathrlap{]} } \,. \end{displaymath} Hence the canonical [[natural transformation]] \begin{displaymath} \itexarray{ \Gamma && \to && \Pi \\ & {}_{\mathllap{\Gamma(i)}}\searrow & & \nearrow_{\mathrlap{\simeq}} \\ && \Gamma Disc \Pi } \end{displaymath} from ``points to pieces'' is on $[P \to X]$ simply the morphism $P \to X$ itself \begin{displaymath} (\Gamma \to \Pi)([P \to X]) = (P \to X) \,. \end{displaymath} Therefore \begin{enumerate}% \item the [[full sub-(∞,1)-category]] on those objects in $\mathbf{H}^I$ for which ``\href{cohesive%20%28infinity,1%29-topos#PiecesHavePoints}{pieces have points}'', hence those for which $\Gamma \to \Pi$ is an [[effective epimorphism in an (∞,1)-category|effective epimorphism]], is the $(\infty,1)$-category of effective epimorphisms in the ambient $(\infty,1)$-topos, hence the $(\infty,1)$-category of [[groupoid object in an (∞,1)-category|groupoid objects]] in the ambient $(\infty,1)$-topos; \item the full sub-$(\infty,1)$-category on the objects with ``\href{cohesive+topos#ObjectsWithOnePointPerCohesivePiece}{one point per piece}'' is the ambient $(\infty,1)$-topos itself. \end{enumerate} \end{remark} \hypertarget{cohesive_structures}{}\subsubsection*{{Cohesive structures}}\label{cohesive_structures} We unwind what some of the canonical [[cohesive (infinity,1)-topos -- structures|structures in a cohesive (∞,1)-topos]] are when realized in the Sierpinski $(\infty,1)$-topos. A group object $\mathbf{B}[\hat G \to G]$ in $\mathbf{H}^I$ is a morphism in $\mathbf{H}$ of the form $= \mathbf{B}\hat G \to \mathbf{B}G$. The corresponding flat coefficient object $\mathbf{\flat} \mathbf{B}[\hat G \to G] \to \mathbf{B}[\hat G \to G]$ is \begin{displaymath} \itexarray{ \mathbf{\hat G} &\to& \mathbf{B} \hat G \\ \downarrow && \downarrow \\ \mathbf{\hat G} &\to& \mathbf{G} } \,. \end{displaymath} Hence the corresponding de Rham coefficient object is \begin{displaymath} \mathbf{\flat}_{dR} \mathbf{B}[\hat G \to G] = [* \to \mathbf{B}A] \,, \end{displaymath} where $A \to \hat G \to G$ exhibits $\hat G$ has an $\infty$-group extension of $G$ by $A$ in $\mathbf{H}$. The corresponding Maurer-Cartan form \begin{displaymath} [\hat G \to G] \to \mathbf{\flat}_{dR}\mathbf{B}[\hat G \to G] \end{displaymath} is \begin{displaymath} \itexarray{ \hat G &\to& G \\ \downarrow && \downarrow \\ * &\to& \mathbf{B}A } \end{displaymath} exhibiting the $A$-cocycle that classifies the extension $\hat G \to G$. \hypertarget{DifferentialCohesion}{}\subsubsection*{{Differential cohesion}}\label{DifferentialCohesion} The leftmost adjoint, $\Pi$, of the string of four adjoints exhibiting cohesion \hyperlink{Cohesion}{above} itself possesses a left adjoint, $X \mapsto [0 \to X]$. Taking this functor along with the leftmost three adjoints of this previous string yields a second quadruple adjunction which exhibits [[differential cohesion]]. For $\mathbf{H}$ any [[cohesive (∞,1)-topos]], we have the ``Sierpinski $(\infty,1)$-topos relative to $\mathbf{H}$'' given by the [[arrow category]] $\mathbf{H}^{\Delta[1]}$, whose [[geometric morphism]] to the [[base topos]] is the [[domain cofibration]] \begin{displaymath} \mathbf{H}^{\Delta[1]} \stackrel{\overset{const}{\hookleftarrow}}{\underset{dom}{\to}} \mathbf{H} \,. \end{displaymath} Conversely, we may think of $\mathbf{H}^{\Delta[1]}$ as being an ``infinitesimal thickening'' of $\mathbf{H}$, as formalized at \emph{[[differential cohesion]]}, where we regard \begin{displaymath} (i_! \dashv i^* \dashv i_* \dashv i^!) : \mathbf{H} \stackrel{\overset{\top_!}{\hookrightarrow}}{\stackrel{\overset{\top^*}{\leftarrow}}{\stackrel{\overset{const}{\hookrightarrow}}{\underset{\bot^*}{\leftarrow}}}} \mathbf{H}^{\Delta[1]} \end{displaymath} as exhibiting $\mathbf{H}^{\Delta[1]}$ as an infinitesimal cohesive neighbourhood of $\mathbf{H}$ (here $(\bot, \top) : \Delta[0] \coprod \Delta[0] \to \Delta[1]$ denotes the endpoint inclusions, following the notation \href{http://ncatlab.org/nlab/show/cohesive+%28infinity,1%29-topos#CohesiveDiagramToposes}{here}). (See also the corresponding examples at \emph{[[Q-category]]}.) \begin{prop} \label{iInclusion}\hypertarget{iInclusion}{} We have for all $X \in \mathbf{H}$ that \begin{displaymath} i_!(X) \simeq [\emptyset \to X] \,. \end{displaymath} \end{prop} \begin{proof} For all $[A \to B]$ in $\mathbf{H}^{\Delta[1]}$ we have \begin{displaymath} \mathbf{H}(X, i^*[A \to B]) \simeq \mathbf{H}(X, cod(A \to B)) \simeq \mathbf{H}(X, B) \,, \end{displaymath} which is indeed naturally equivalent to \begin{displaymath} \mathbf{H}^{\Delta[1]}([\emptyset \to X], [A \to B]) \,. \end{displaymath} \end{proof} Therefore an object of $\mathbf{H}^{\Delta[1]}$ given by a morphism $[P \to X]$ in $\mathbf{H}$ is regarded by the differential cohesion $i : \mathbf{H} \hookrightarrow \mathbf{H}^{\Delta[1]}$ as being an infinitesimal thickening of $X$ by the fibers of $P$: where before we just had that the fibers of $P$ are ``contractible cohesive thickenings'' of the discrete object $X$, now $X$ is ``discrete relative to $\mathbf{H}$'' (hence not necessarily discrete in $\mathbf{H}$) and the fibers are in addition regarded as being infinitesimal. This is of course a very crude notion of infinitesimal extension. Notice for instance the following \begin{prop} \label{}\hypertarget{}{} With respect to the above differential cohesion $i : \mathbf{H} \hookrightarrow \mathbf{H}^{\Delta[1]}$, every morphism in $\mathbf{H}$ is a [[formally étale morphism]]. \end{prop} \begin{proof} By definition, given a morphism $f : X \to Y$, it is formally \'e{}tale precisely if \begin{displaymath} \itexarray{ i_! X &\stackrel{i_! f}{\to}& i_! Y \\ \downarrow && \downarrow \\ i_* X &\stackrel{i_*}{\to}& i_* Y } \end{displaymath} is an [[(∞,1)-pullback]]. By prop. \ref{iInclusion} the above square diagram in $\mathbf{H}^{\Delta[1]}$ is \begin{displaymath} \itexarray{ [\emptyset \to X] &\to& [\emptyset \to Y] \\ \downarrow && \downarrow \\ [X \stackrel{id}{\to} X] &\to& [Y \stackrel{id}{\to} Y] } \,. \end{displaymath} Since $(\infty,1)$-pullbacks of $(\infty,1)$-presheaves are computed objectwise, this is an $(\infty,1)$-pullback in $\mathbf{H}^{\Delta[1]}$ precisely if the ``back and front sides'' \begin{displaymath} \itexarray{ \emptyset &\to& \emptyset \\ \downarrow && \downarrow \\ X &\stackrel{f}{\to}& Y } \end{displaymath} and \begin{displaymath} \itexarray{ X &\stackrel{f}{\to}& Y \\ \downarrow^{\mathrm{id}} && \downarrow^{\mathrm{id}} \\ X &\stackrel{f}{\to}& Y } \end{displaymath} are $(\infty,1)$-pullbacks in $\mathbf{H}$. This is clearly always the case. The adjunction $i_{!} \circ i^{\ast} \vdash i_{\ast} \circ i^{\ast}$ forms the [[Aufhebung]] of $\emptyset \vdash \ast$ for the Sierpinski topos. \end{proof} \hypertarget{AsAClassifyingTopos}{}\subsubsection*{{As a classifying topos}}\label{AsAClassifyingTopos} The Sierpinski topos is the [[classifying topos]] for [[subterminal objects]] in [[toposes]] (see e.g. \hyperlink{Johnstone77}{Johnstone 77, p. 117}). The generic subterminal inclusion in the Sierpinski topos is the unique inclusion of $[\emptyset \to \ast]$ into $[\ast \to \ast]$. The (non-full) inclusion \begin{displaymath} \Delta^1 = \{\ast \to S^0\} \longrightarrow FinSet^{\ast/} \hookrightarrow \infty Grpd_{fin}^{\ast/} \end{displaymath} induces via restriction and right [[Kan extension]] an [[essential geometric morphism|essential]] [[geometric morphism]] \begin{displaymath} \mathbf{H}^{\Delta^1} \stackrel{\longleftarrow}{\hookrightarrow} \mathbf{H}[X_\ast] \end{displaymath} of the Sierpinski topos into the [[classifying topos]] for [[pointed objects]], $\mathbf{H}[X_\ast]$. (This becomes a [[geometric embedding]] if we refined the Sierpinski topos of bundles to the topos of bundles with sections). The pointed object in $\mathbf{H}^{\Delta^1}$ which is classified by this [[geometric morphism]] is $[\ast \to S^0]$ (with $S^0 = \ast \coprod \ast$ the [[0-sphere]]) with its canonical map from $[\ast \to \ast]$. In summary, the generic subterminal object and the generic pointed object fit into a sequence of the form \begin{displaymath} \itexarray{ \emptyset &\hookrightarrow& \ast &\longrightarrow& \ast \\ \downarrow && \downarrow && \downarrow \\ \ast &\longrightarrow& \ast &\longrightarrow& S^0 } \end{displaymath} \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} According to the general idea of [[cohomology]], for $\mathbf{H}$ an [[(∞,1)-topos]], and $X, A \in \mathbf{H}$ two [[objects]], cohomology classes of $X$ with coefficients in $A$ are the connected components \begin{displaymath} H(X,A) := \pi_0 \mathbf{H}(X,A) \,. \end{displaymath} Cohomology in the Sierpinski $(\infty, 1)$-topos, $\mathbf{H}^{I}$, corresponds to [[relative cohomology]] in $\mathbf{H}$. Indeed, let $i : Y \to X$ and $f : B \to A$ be two [[morphisms]] in $\mathbf{H}$. Then the \textbf{relative cohomology} of $X$ with coefficients in $A$ relative to these morphisms is the connected components of the $\infty$-groupoid of relative cocycles \begin{displaymath} H_{Y}^B(X,A) := \pi_0 \mathbf{H}^I(Y \stackrel{i}{\to} X\;,\; B \stackrel{f}{\to} A) \,. \end{displaymath} In terms of the [[codomain fibration]], $\mathbf{H}^I \to \mathbf{H}$, intrinsic cohomology can be considered as nonabelian [[twisted cohomology]] (see there). \hypertarget{references}{}\subsection*{{References}}\label{references} The Sierpinski topos is mentioned around remarks A2.1.12, B3.2.11 (p.83, p.387f) in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol. I}, Oxford UP 2002. \end{itemize} See also \begin{itemize}% \item [[Peter Johnstone]], \emph{Topos theory}, London Math. Soc. Monographs \textbf{10}, Acad. Press 1977, xxiii+367 pp. \end{itemize} The [[homotopy type theory]] of the Sierpinski $(\infty,1)$-topos is discussed in \begin{itemize}% \item [[Mike Shulman]], \emph{The univalence axiom for inverse diagrams} (\href{http://arxiv.org/abs/1203.3253}{arXiv:1203.3253}) \end{itemize} Cohesion of the Sierpinski $\infty$-topos is discussed in section 2.2.4 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} [[!redirects Sierpinski (∞,1)-topos]] [[!redirects Sierpinski (infinity,1)-topos]] \end{document}