\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Snaith theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{ForComplexTopologicalKTheory}{For complex topological K-theory}\dotfill \pageref*{ForComplexTopologicalKTheory} \linebreak \noindent\hyperlink{preliminaries_2}{Preliminaries}\dotfill \pageref*{preliminaries_2} \linebreak \noindent\hyperlink{the_ring_spectrum_of_the_circle_2group}{The ring spectrum of the circle 2-group}\dotfill \pageref*{the_ring_spectrum_of_the_circle_2group} \linebreak \noindent\hyperlink{MapToKTheorySpacetum}{The map to the K-theory spectrum}\dotfill \pageref*{MapToKTheorySpacetum} \linebreak \noindent\hyperlink{isomorphy}{Isomorphy}\dotfill \pageref*{isomorphy} \linebreak \noindent\hyperlink{for_periodic_complex_cobordism}{For periodic complex cobordism}\dotfill \pageref*{for_periodic_complex_cobordism} \linebreak \noindent\hyperlink{for_algebraic_ktheory}{For algebraic K-theory}\dotfill \pageref*{for_algebraic_ktheory} \linebreak \noindent\hyperlink{for_smooth_spectra_and_differential_ktheory}{For smooth spectra and differential K-theory}\dotfill \pageref*{for_smooth_spectra_and_differential_ktheory} \linebreak \noindent\hyperlink{ForMoravaETheory}{Snaith-like theorem for Morava $E$-theories}\dotfill \pageref*{ForMoravaETheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The original theorem by Snaith (\hyperlink{Snaith79}{Snaith 79}) identifies the [[complex K-theory spectrum]] [[KU]] simply as the localization of the [[∞-group ∞-ring]] $\mathbb{S}[B U(1)]$ of the [[circle 2-group]] away from the [[Bott element]] $\beta$: \begin{displaymath} KU \simeq \mathbb{S}[B U(1)][\beta^{-1}] \,. \end{displaymath} Later more instances of such characterizations of familiar [[E-∞ rings]] have been given: \begin{itemize}% \item in (\hyperlink{GepnerSnaith08}{Gepner-Snaith 08}) the analogous statement for [[algebraic K-theory]] is formulated in terms of [[motivic spectra]]; \item in (\hyperlink{Westerland12}{Westerland 12}) the tower of [[Morava E-theories]] (or some [[homotopy fixed point]] [[spectra]] of these) is shown to be localizations of the [[∞-group ∞-rings]] of $B^{n+1} \mathbb{Z}_p$, for all $n \in \mathbb{N}$. \end{itemize} \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{preliminaries}{}\subsubsection*{{Preliminaries}}\label{preliminaries} For $A$ an [[abelian ∞-group]] write $E \coloneqq \mathbb{S}[A] = \Sigma^\infty_+ A$ for its [[∞-group E-∞ ring]]. \begin{defn} \label{}\hypertarget{}{} For $\beta \in \pi_n(E)$ an element of the $n$th stable [[homotopy group]], then \emph{multiplication by $\beta$} is a homomorphism \begin{displaymath} \beta_\ast \;\colon\; E \to \Sigma^{-n} E \,. \end{displaymath} The \emph{localization} of $E$ at $\beta$ is the [[homotopy colimit]] over the iterated multiplication with $\beta$ \begin{displaymath} E[\beta^{-1}] \coloneqq \underset{\to}{\lim} \left[ E \stackrel{\beta_\ast}{\to} \Sigma^{-n}E \stackrel{\Sigma^{-n} \beta_\ast}{\to} \Sigma^{-2n} E \to \cdots \right] \end{displaymath} which has the [[universal property]] that $\mu_\beta$ becomes an [[equivalence]] on $E[\beta^{-1}]$. \end{defn} \hypertarget{ForComplexTopologicalKTheory}{}\subsubsection*{{For complex topological K-theory}}\label{ForComplexTopologicalKTheory} The original formulation of Snaith's theorem (\hyperlink{Snaith70}{Snaith 79, theorem 2.12}, spring) for complex [[topological K-theory]]. \hypertarget{preliminaries_2}{}\paragraph*{{Preliminaries}}\label{preliminaries_2} Write $(Ho(Top), \times, \ast)$ for the [[classical homotopy category]], regarded as a [[symmetric monoidal category]] under forming [[product spaces]], with [[tensor unit]] the [[point space]]. Write $(Ho(Top^{\ast/}), \wedge , S^0)$ for the homotopy category of [[pointed topological spaces]] with [[tensor product]] the [[smash product]] of pointed spaces and [[tensor unit]] the [[0-sphere]] Write $(Ho(Spectra), \wedge, \mathbb{S})$ be the [[stable homotopy category]] with its [[symmetric monoidal smash product of spectra]] $\wedge$ whose [[tensor unit]] is the [[sphere spectrum]] $\mathbb{S}$. For $A,B \in Ho(Spectra)$ two [[spectra]], we write \begin{displaymath} [A,B] \coloneqq Hom_{Ho(Spectra)}(A,B) \in Ab \end{displaymath} for [[hom-set]] in the [[stable homotopy category]] and write \begin{displaymath} [A,B]_\bullet \coloneqq [\Sigma^\bullet A, B] \end{displaymath} for the corresponding $\mathbb{Z}$-graded group (\href{Introduction+to+Stable+homotopy+theory+--+1-1#GradedAbelianGroupStructureOnHomsInTheHomotopyCategory}{this def.}). There are two pairs of ([[derived functor|derived]]) [[adjoint functors]] \begin{displaymath} Ho(Spectra) \underoverset {\underset{\Omega^\infty}{\longrightarrow}} {\overset{\Sigma^\infty}{\longleftarrow}} {} Ho(Top^{\ast/}) \underoverset {\underset{U}{\longrightarrow}} {\overset{(-)_+}{\longleftarrow}} {\bot} Ho(Top) \end{displaymath} which are [[strong monoidal functors]] (by \href{pointed+object#WedgeAndSmashOfBasePointAdjoinedTopologicalSpaces}{this example} and \href{Introduction+to+Stable+homotopy+theory+--+1-1#StableHomotopyCategoryIsIndeedStabilizationOfClassicalHomotopyCategory}{this prop}). The left adjoint composite \begin{displaymath} \mathbb{S}[-] \;\colon \Sigma^\infty((-)_+) \end{displaymath} hence takes [[H-spaces]] and in particular [[H-groups]] $G$ to [[ring spectra]]. More in detail, an [[H-space]] structure is a $G \in Ho(Top)$ equipped with morphisms $\mu \;\colon\; G \times G \longrightarrow G$ $e \;\colon\; \ast \longrightarrow G$ satisfying [[associativity]] and [[unitality]] in $Ho(Spectra)$, and the corresponding ring spectrum has product \begin{displaymath} \left(\Sigma^\infty(G_+)\right) \wedge \left( \Sigma^\infty G_+\right) \;\simeq\; \Sigma^\infty( (G \times G)_+ ) \overset{\Sigma^\infty (e_+)}{\longrightarrow} \Sigma^\infty (G_+) \end{displaymath} and unit \begin{displaymath} \mathbb{S} \simeq \Sigma^\infty( \ast_+) \overset{ \Sigma^\infty(e_+) }{\longrightarrow} \Sigma^\infty(G_+) \end{displaymath} We call \begin{displaymath} \mathbb{S}[G] \coloneqq \Sigma^\infty(G_+) \end{displaymath} equipped with this monoid structure the \emph{[[H-group ring spectrum]]} of $G$. See \href{∞-group+∞-ring#HGroupRingSpectra}{there} for more. \hypertarget{the_ring_spectrum_of_the_circle_2group}{}\paragraph*{{The ring spectrum of the circle 2-group}}\label{the_ring_spectrum_of_the_circle_2group} One such [[H-group]] is the \emph{[[circle 2-group]]}, hence (the [[homotopy type]] of) the [[classifying space]] $B U(1)$ for [[complex line bundles]], equivalently the [[Eilenberg-MacLane space]] $K(\mathbb{Z},2)$, canonically presented by the [[complex projective space]] $\mathbb{C}P^\infty$ \begin{displaymath} K(\mathbb{Z},2) \simeq B U(1) \simeq \mathbb{C}P^\infty \;\in\; Ho(Spaces) \,. \end{displaymath} This being the [[classifying space]] for [[complex line bundles]], it becomes an [[H-group]] via the map \begin{displaymath} B U(1) \times B U(1) \longrightarrow B U(1) \end{displaymath} which classifies the [[tensor product of vector bundles|tensor product of line bundles]], with inverses given by the map \begin{displaymath} B U(1) \longrightarrow B U(1) \end{displaymath} which form [[dual vector bundle|dual line bundles]]. Hence its [[H-group ring spectrum]] is \begin{displaymath} \mathbb{S}[B U(1)] \;=\; \Sigma^\infty( B U(1)_+ ) \,. \end{displaymath} Therefore for $X \in Ho(Top^{\ast/})$ a [[pointed topological space]], then \begin{displaymath} [\Sigma^\infty X,\Sigma^\infty(G_+)]_\bullet \end{displaymath} is a graded ring, with the product of elements \begin{displaymath} \left( \Sigma^{n_i} \Sigma^\infty X \overset{\alpha_i}{\longrightarrow} \Sigma^\infty(G_+) \right) \;\in\; [\Sigma^\infty X, \Sigma^\infty(G_+)]_{n_i} \end{displaymath} for $i \in \{1,2\}$ given by \begin{displaymath} \Sigma^{n_1 + n_2} \Sigma^\infty X \overset{\Sigma^{n_1+ n_2} \Sigma^\infty \Delta_X}{\longrightarrow} \Sigma^{n_1 + n_2} \Sigma^\infty (X \wedge X) \simeq \left( \Sigma^{n_1} \Sigma^\infty X \right) \wedge \left( \Sigma^{n_2} \Sigma^\infty X \right) \overset{ \alpha_1 \wedge \alpha_2 }{\longrightarrow} \left( \Sigma^\infty (G_+) \right) \wedge \left( \Sigma^\infty (G_+) \right) \overset{\Sigma^\infty (\mu_+)}{\longrightarrow} \Sigma^\infty (G_+) \,. \end{displaymath} Here the isomorphism on the left is the combination of the strong monoidalness of $\Sigma^\infty$ with the respect of suspension $\Sigma$ for the smash product of spectra (the [[tensor triangulated category]] structure on $Ho(Spectra)$, \href{Introduction+to+Stable+homotopy+theory+--+1-2#TensorTriangulatedStructureOnStableHomotopyCategory}{this prop.}). Observe that we have a splitting \begin{displaymath} \Sigma^\infty(B U(1)_+) \;\simeq\; \left( \Sigma^\infty (B U(1)) \right) \;\oplus\; \mathbb{S} \end{displaymath} (by \href{∞-group+∞-ring#HGroupRingSpectrumSplitsAsDirectSumWithSphereSpectrum}{this remark}) and hence a canonical morphism \begin{displaymath} \Sigma^\infty (B U(1)) \longrightarrow \Sigma^\infty (B U(1)_+) \,. \end{displaymath} Via this splitting, the morphism in $Ho(Top^{\ast/})$ \begin{displaymath} h \colon S^2 \longrightarrow B U(1) \end{displaymath} in $[S^2, B U(1)] \simeq \pi_2(B U(1)) \simeq \mathbb{Z}$ which classifies the [[basic complex line bundle on the 2-sphere]] and represents $1 \in \mathbb{Z}$, induces a morphism \begin{displaymath} \beta \;\colon\; \Sigma^2 \mathbb{S} \simeq \Sigma^\infty S^2 \overset{ \Sigma^\infty( h ) }{\longrightarrow} \Sigma^\infty B U(1) \overset{}{\longrightarrow} \Sigma^\infty (B U(1)_+) \end{displaymath} hence an element in $[\mathbb{S}, \Sigma^\infty(B U(1)_+)]_2$. \hypertarget{MapToKTheorySpacetum}{}\paragraph*{{The map to the K-theory spectrum}}\label{MapToKTheorySpacetum} The [[spectrum]] [[KU]] which [[Brown representability theorem|represents]] complex [[topological K-theory]] has in degree 0 the the [[product space]] \begin{displaymath} \Omega^\infty KU \simeq B U \times \mathbb{Z} \in Ho(Top^{\ast/}) \end{displaymath} of the stable [[classifying space]] $B U$ for [[complex vector bundles]] and the [[integers]]. The base point is $(\ast, 0)$. The [[projection]] \begin{displaymath} B U \times \mathbb{Z} \longrightarrow \mathbb{Z} \end{displaymath} classifies the virtual [[rank of a vector bundle|rank]] of [[virtual vector bundle]]. Hence the inclusion of classifying spaces \begin{displaymath} B U \simeq B U \times \{0\} \hookrightarrow B U \times \mathbb{Z} \end{displaymath} classifies the inclusion $\tilde K_{\mathbb{C}}(-) \hookrightarrow K_{\mathbb{C}}(-)$ of [[reduced K-theory]]. There is a canonical morphism \begin{displaymath} \Sigma^\infty(B U(1)_+) \overset{\Phi}{\longrightarrow} K U \end{displaymath} in $Ho(Spectra)$, being the $(\Sigma^\infty \dashv \Omega^\infty)$-[[adjunct]] of \begin{displaymath} B U(1)_+ \longrightarrow B U \times \mathbb{Z} \simeq \Omega^\infty K U \end{displaymath} in $Ho(Top^{\ast/})$, which in turn is the $((-)_+ \dashv U)$-[[adjunct]] of the canonical \begin{displaymath} \mathcal{O}(1) \;\colon\; B U(1) \longrightarrow B U \simeq B U \times \{1\} \hookrightarrow B U \times \mathbb{Z} \end{displaymath} in $Ho(Top)$. Since the [[formal group law]] for K-theory says that $\mu^\ast ( \mathcal{O}(1) ) \simeq pr_1^\ast (\mathcal{O}(1)) \otimes pr_2^\ast(\mathcal{O}(2))$ $\Phi$ is a homomoprhism of ring spectra. Under the above splitting, the morphism $\Phi$ decomposes as \begin{displaymath} \Phi \;\colon\; \Sigma^\infty (B U(1)_+) \simeq \Sigma^\infty B U(1) \oplus \mathbb{S} \overset{ ( \tilde i , e_{KU}) }{\longrightarrow} KU \end{displaymath} Since, by the above, morphisms $\Sigma^\infty B U(1) \longrightarrow K U$ in $Ho(Spectra)$, hence equivalently morphisms $B U(1) \longrightarrow B U \times \mathbb{Z}$ in $Ho(Top^{\ast/})$, hence equivalently morphisms $B U(1) \to B U$ in $Ho(Top)$ correspond to the reduced K-theory of $B U(1)$, and since morphisms $\mathbb{S} \to KU$ in $Ho(Spectra)$, hence equivalently morphism $\ast \to B U \times \mathbb{Z}$ in $Ho(Top)$ correspond to the K-theory of the point, and since over (colimits of) [[compact topological spaces]] K-theory splits as $K(X) \simeq \tilde K(X) \oplus K(\ast)$ via $[E]- n \mapsto ([E] - rk(E)) + ( rk(E) - n )$ (\href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop}) it follows that \begin{enumerate}% \item $\tilde i$ takes the canonical line bundle $\mathcal{O}(1)$ on $B U(1)$ to its image $\mathcal{O}(1)-1$ in reduced K-theory \begin{displaymath} B U(1) \overset{\mathcal{O}(1) \mapsto (\mathcal{O}(1)-1)}{\longrightarrow} B U \simeq B U \times \{0\} \hookrightarrow B U \times \mathbb{Z} \simeq \Omega^\infty K U \end{displaymath} \item $e_{K U}$ is adjunct to $\ast \simeq (\ast,1) \hookrightarrow B U \times \mathbb{Z}$ ( is the ring spectrum unit of $K U$). \end{enumerate} Now observe that $\Phi$ takes multiplication by $\beta$ to multiplication with the [[Bott element]] $(h-1)$: This is because multiplication by $\beta$ is the outer right boundary of the following diagram \begin{displaymath} \itexarray{ \Sigma^\infty S^2 \wedge \Sigma^n \Sigma^\infty X \\ {}^{\mathllap{ (h \oplus 0) \wedge id }}\downarrow \\ \left(\Sigma^\infty( B U(1) ) \oplus \mathbb{S}\right) \wedge \Sigma^n \Sigma^\infty X \\ {}^{\mathllap{id \wedge \alpha}}\downarrow \\ \Sigma^\infty(B U(1)_+) \wedge \Sigma^n \Sigma^\infty( B U(1)_+ ) &\overset{\Sigma^n\Sigma^\infty (\mu_+)}{\longrightarrow}& \Sigma^n \Sigma^\infty (B U(1)_+) \\ \downarrow && \downarrow \\ K U \wedge \Sigma^n K U &\longrightarrow & \Sigma^n K U } \end{displaymath} and since the bottom square commutes (since tensor product of line bundles corresponds to their product in K-theory) this is equivalent to the left and bottom boundary, which, by the above discussion, is multiplication with the [[Bott element]] $(h-1)$. Since the Bott element is invertible in $K U$, this means for all $X \in Ho(Top^\ast/)$ that the morphism \begin{displaymath} [\Sigma^\infty X , \Sigma^\infty ( B (1)_+ ) ]_\bullet \overset{\Phi_X \coloneqq \Phi \circ (-)}{\longrightarrow} [\Sigma^\infty X, K U]_\bullet \simeq \tilde K_{\mathbb{C}}^\bullet(X) \end{displaymath} extends to the quotient ring \begin{displaymath} [\Sigma^\infty X, \Sigma^\infty ( B U(1)_+ )]_{\bullet}[\beta^{-1}] \end{displaymath} in which two elements are identified if they differ by multiplication by $\beta$, as above: \begin{displaymath} \itexarray{ [\Sigma^\infty X, \Sigma^\infty( B U(1)_+ )] &\overset{\Phi}{\longrightarrow}& \tilde K_{\mathbb{C}}^\bullet(X) \\ \downarrow & \nearrow_{\mathrlap{\exists \Phi}} \\ [\Sigma^\infty X, \Sigma^\infty( B U(1)_+ )]_\bullet [\beta^{-1}] } \,. \end{displaymath} \hypertarget{isomorphy}{}\paragraph*{{Isomorphy}}\label{isomorphy} \begin{theorem} \label{}\hypertarget{}{} If $X \in Ho(Top^{\ast/})$ has the homotopy type of a [[finite CW-complex]], then the [[natural transformation]] \begin{displaymath} \Phi_X \;\colon\; [X, \Sigma^\infty ( B U(1)_+ )]_\bullet [\beta^{-1}] \longrightarrow \tilde K^\bullet(X) \end{displaymath} is a [[natural isomorphism]]. \end{theorem} (\hyperlink{Snaith81}{Snaith 81, theorem 2.12}, \hyperlink{HopkinsMathew}{Hopkins-Mathew}) That (before localization) the map is an epimorphism is due to (\hyperlink{Segal73}{Segal 73, prop. 1}), see \href{complex+projective+space#HGroupRingSpectrumSurjectsOntoTopologicalKTheory}{this prop.}. The analog of this statement for [[real projective space]] $\mathbb{R}P^\infty \simeq B \mathbb{Z}/2$ instead of [[complex projective space]] $\mathbb{C}P^\infty \simeq B U(1)$ is the [[Kahn-Priddy theorem]]. \hypertarget{for_periodic_complex_cobordism}{}\subsubsection*{{For periodic complex cobordism}}\label{for_periodic_complex_cobordism} \begin{theorem} \label{}\hypertarget{}{} The [[periodic complex cobordism spectrum]] is the [[∞-group ∞-ring]] of the [[classifying space]] for stable [[complex vector bundles]] (the classifying space for [[topological K-theory]]) localized at the [[Bott element]] $\beta$: \begin{displaymath} PMU \simeq (\mathbb{S}[B U])[\beta^{-1}] \,. \end{displaymath} \end{theorem} (\hyperlink{Snaith81}{Snaith 81, theorem 2.7}) \hypertarget{for_algebraic_ktheory}{}\subsubsection*{{For algebraic K-theory}}\label{for_algebraic_ktheory} \begin{remark} \label{}\hypertarget{}{} The analog of this result for the periodic [[algebraic cobordism spectrum]] and [[algebraic K-theory]] as [[motivic spectra]] is discussed in (\hyperlink{GepnerSnaith08}{GepnerSnaith 08}). \end{remark} \hypertarget{for_smooth_spectra_and_differential_ktheory}{}\subsubsection*{{For smooth spectra and differential K-theory}}\label{for_smooth_spectra_and_differential_ktheory} Refinement of the Snaith theorem for [[KU]] to [[smooth spectra]] and to [[differential K-theory]] is in (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13, section 6.3}). See at \emph{\href{differential%20cohomology%20diagram#ViaSmoothSnaithTheorem}{differential cohomology diagram -- Smooth Snaith K-theory}}. \hypertarget{ForMoravaETheory}{}\subsubsection*{{Snaith-like theorem for Morava $E$-theories}}\label{ForMoravaETheory} Write $\Gamma_n$ for the [[Honda formal group]]. The [[automorphism group]] $Aut(\Gamma_n)$ induces for each prime $p$ a canonical [[determinant]] morphism \begin{displaymath} det \;\colon\; \mathbb{G}_n \longrightarrow \mathbb{Z}_p^\times \end{displaymath} from the [[Morava stabilizer group]] $\mathbb{G}_n \coloneqq Gal(\mathbb{F}_{p^n}/\mathbb{F}_p) \ltimes Aut(\Gamma_n)$. Write \begin{displaymath} S \mathbb{G}_n \coloneqq ker(det) \end{displaymath} for the [[kernel]]. This naturally [[infinity-action|acts]] on the [[Morava E-theory]] spectrum $E_n$. Write $E^{S\mathbb{G}_n}$ for the corresponding [[homotopy fixed point]] [[spectrum]]. (\hyperlink{Westerland12}{Westerland 12, 1.1}). Write $L_{K(n)} \mathbb{S}[B^{n+1} \mathbb{Z}_p]$ for the $K(n)$-localization of the [[∞-group ∞-ring]] of the [[n-group|(n+1)-group]] $B^n \mathbb{Z}_p$. \begin{theorem} \label{}\hypertarget{}{} There is a [[generalized element]] $\rho_n$ of the [[E-∞ ring]] $L_{K(n)} \mathbb{S}[B^{n+1} \mathbb{Z}_p]$ such that localization at that element yields the [[Morava E-theory]] spectrum $S\mathbb{G}_n$[[homotopy fixed points]]: \begin{displaymath} L_{K(n)} \mathbb{S}[B^{n+1} \mathbb{Z}_p] [\rho_n^{-1}] \stackrel{\simeq}{\longrightarrow} E_n^{S\mathbb{G}_n} \,. \end{displaymath} \end{theorem} (\hyperlink{Westerland12}{Westerland 12, theorem 1.2}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[splitting principle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The theorem is due to \begin{itemize}% \item [[Victor Snaith]], \emph{Algebraic Cobordism and K-theory}, Mem. Amer. Math. Soc. no 221 (1979) \end{itemize} with a simpler proof given in \begin{itemize}% \item [[Victor Snaith]], \emph{Localized stable homotopy of some classifying spaces}, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 325-330. MR 600247 (82g:55006) (\href{https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0305004100058205}{pdf}) \end{itemize} using results from \begin{itemize}% \item [[Graeme Segal]], \emph{The stable homotopy of complex of projective space}, The quarterly journal of mathematics (1973) 24 (1): 1-5. ([[Segal72.pdf:file]], \href{https://doi.org/10.1093/qmath/24.1.1}{doi:10.1093/qmath/24.1.1}) \end{itemize} Another proof due to [[Mike Hopkins]] is in \begin{itemize}% \item [[Akhil Mathew]] (following [[Mike Hopkins]]), \emph{Snaith's construction of complex K-theory} (\href{http://math.uchicago.edu/~amathew/snaith.pdf}{pdf}) \end{itemize} Refinement to [[smooth spectra]] and [[differential K-theory]] is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], section 6.3 of \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} Discussion of the [[E-∞ ring]] structure involved is around theorem 3.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]} \end{itemize} A version for [[motivic spectra]] [[algebraic K-theory]] is discussed in \begin{itemize}% \item [[David Gepner]], [[Victor Snaith]], \emph{On the motivic spectra representing algebraic cobordism and algebraic K-theory}, Documenta Math. 2008 (\href{http://arxiv.org/abs/0712.2817}{arXiv:0712.2817}) \end{itemize} and for [[motivic cohomology]] in \begin{itemize}% \item [[Markus Spitzweck]], [[Paul Arne Østvær]], \emph{The Bott inverted infinite projective space is homotopy algebraic K-theory} (\href{http://folk.uio.no/paularne/bott.pdf}{pdf}) \end{itemize} Higher [[chromatic homotopy theory|chromatic]] analogs for [[Morava E-theory]] are discussed in \begin{itemize}% \item [[Craig Westerland]], \emph{A higher chromatic analogue of the image of J} (\href{http://arxiv.org/abs/1210.2472}{arXiv:1210.2472}) \item [[John Lind]], [[Hisham Sati]], [[Craig Westerland]], \emph{A higher categorical analogue of topological T-duality for sphere bundles} (\href{http://arxiv.org/abs/1601.06285}{arXiv:1601.06285}) \end{itemize} A unifying [[general abstract]] perspective is discussed in \begin{itemize}% \item [[Peter Arndt]], section 3.2 of \emph{Abstract motivic homotopy theory}, thesis 2017 (\href{https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2017021015476?mode=full}{web}, \href{https://repositorium.ub.uni-osnabrueck.de/bitstream/urn:nbn:de:gbv:700-2017021015476/6/thesis_arndt.pdf}{pdf}, [[ArndtAbstractMotivic.pdf:file]]) exposition: lecture at \emph{\href{www.andrew.cmu.edu/user/fwellen/abstracts.html}{Geometry in Modal HoTT}}, 2019 (\href{https://www.youtube.com/watch?v=f0wpcNs8hQo}{recording I}, \href{https://www.youtube.com/watch?v=sTl8637a2Zo}{recording II}) \end{itemize} See also at \emph{[[spherical T-duality]]}. [[!redirects Snaith's theorem]] \end{document}