\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Some remarks on axiomatized set theory} \begin{itemize}% \item [[Thoralf Skolem]], \emph{Einige Bemerkungen zur axiomatischen Begr\"u{}ndung der Mengenlehre}, 1922 \end{itemize} is a talk on occasion of the Fith Congress of Scandinavian Mathematicians in which some major ideas of [[set theory]] appear and the idea of set theoretic [[foundation of mathematics|foundation]] is discussed. \hypertarget{content}{}\subsection*{{Content}}\label{content} Axiomatic set theory at the stage of this talk is not a formal theory, i.e. not conceived as being a manipulation of strings. Instead the axioms are considered to describe properties of a certain universe or range of things $B$ (German ``Bereich''). This $B$ would be called underlying set of a model in modern terminology. \hypertarget{the_peculiar_fact_that_in_order_to_treat_sets_we_must_begin_with_domains_that_are_constituted_in_a_certain_way}{}\subsubsection*{{The peculiar fact that, in order to treat ``sets'', we must begin with ``domains'' that are constituted in a certain way}}\label{the_peculiar_fact_that_in_order_to_treat_sets_we_must_begin_with_domains_that_are_constituted_in_a_certain_way} First, Skolem points out the problem of how to think of $B$ itself: if we conceive $B$ as a set itself, we can not do so as a thing of the theory we are developing. Second, it is pointed out that $B$ is not uniquely determined by the set of axioms. \hypertarget{a_definition_much_to_be_desired_that_makes_zermelos_notion_definite_proposition_precise}{}\subsubsection*{{A definition, much to be desired, that makes Zermelo's notion ``definite proposition'' precise}}\label{a_definition_much_to_be_desired_that_makes_zermelos_notion_definite_proposition_precise} In modern language a (well-formed) formula. \hypertarget{the_fact_that_in_every_thoroughgoing_axiomatization_settheoretic_notions_are_unavoidably_relative}{}\subsubsection*{{The fact that in every thoroughgoing axiomatization set-theoretic notions are unavoidably relative}}\label{the_fact_that_in_every_thoroughgoing_axiomatization_settheoretic_notions_are_unavoidably_relative} Downward version of [[Löwenheim-Skolem theorem]] is proved, i.e. existence of countable models. [[Skolem's paradox]] is explained. \hypertarget{the_fact_that_zermelos_system_is_not_sufficient_to_provide_a_foundation_for_ordinary_set_theory}{}\subsubsection*{{The fact that Zermelo's system is not sufficient to provide a foundation for ordinary set theory}}\label{the_fact_that_zermelos_system_is_not_sufficient_to_provide_a_foundation_for_ordinary_set_theory} [[axiom of replacement|Axioms of replacement]] is suggested. \hypertarget{the_difficulties_caused_by_nonpredicative_stipulations_when_one_wants_to_prove_the_consistency_of_the_axioms}{}\subsubsection*{{The difficulties caused by nonpredicative stipulations when one wants to prove the consistency of the axioms}}\label{the_difficulties_caused_by_nonpredicative_stipulations_when_one_wants_to_prove_the_consistency_of_the_axioms} Skolem argues that the consistency of set theory can not be proved (note that at that time G\"o{}del's [[incompleteness theorem]] was still unknown). Such a proof is in Skolem's opinion not possible as in set theory sets are formed in a ``non-predicative'' way, that is to say they are formed from all sets of $B$ and not just a finite number of sets, e.g. the intersection of all sets with some property. Skolem remarks that a the ``non-predicative requirement of reproduction of sets'' also occurs in [[Principia Mathematica|Russell's type theory]] in form of the [[axiom of reducibility]]. \hypertarget{the_nonuniqueness_mehrdeutigkeit_of_the_domain_}{}\subsubsection*{{The nonuniqueness Mehrdeutigkeit of the domain $B$}}\label{the_nonuniqueness_mehrdeutigkeit_of_the_domain_} In modern language: Based on a given model of set theory, a new model is constructed by extending the underlying set by a new element. In a footnote Skolem speculates that the [[continuum hypothesis]] can not decided in the set theory of his time. \hypertarget{the_fact_that_mathematical_induction_is_necessary_for_the_logical_investigation_of_abstractly_given_systems_of_axioms}{}\subsubsection*{{The fact that mathematical induction is necessary for the logical investigation of abstractly given systems of axioms}}\label{the_fact_that_mathematical_induction_is_necessary_for_the_logical_investigation_of_abstractly_given_systems_of_axioms} A skeptic view on [[Hilbert's program]], that was ongoing at that point, is explained. In modern language the argument amounts to saying that in the metalanguage of mathematical logic the induction axiom is indispensable. \hypertarget{a_remark_on_the_principle_of_choice}{}\subsubsection*{{A remark on the principle of choice}}\label{a_remark_on_the_principle_of_choice} Skolem criticizes opponents of the [[axiom of choice]] by rooting their opposition to a ``non-axiomatic'' understanding of sets: sets are for them not things subject to some axioms but just a collection on \emph{explicitely} given things. \hypertarget{concluding_remark}{}\subsubsection*{{Concluding remark}}\label{concluding_remark} \begin{quote}% \ldots{} I believed that it was so clear that axiomatization in terms of sets was not a satisfactory ultimate foundation of mathematics that mathematicians would, for the most part, not be very much concerned with it. But in recent times I have seen to my surprise that so many mathematicians think that these axioms of set theory provide the ideal foundation for mathematics \ldots{} \ldots{} glaubte ich, dass es so klar sei, dass diese Mengenaxiomatik keine befriedigende letzte Grundlage der Mathematik w\"a{}re, dass die Mathematiker gr\"o{}sstenteils sich nicht so sehr darum k\"u{}mmern w\"u{}rden. In der letzten Zeit habe ich aber zu meinem Erstauenen gesehen, dass sehr viele Mathematiker diese Axiome der Mengenlehre als ideale Begr\"u{}ndung der Mathematik betrachten; \ldots{} \end{quote} \hypertarget{references}{}\subsection*{{References}}\label{references} Originally published in German \begin{itemize}% \item [[Thoralf Skolem]], \emph{Einige Bemerkungen zu axiomatischen Begr\"u{}ndung der Mengenlehre}, Mathematikerkongressen i Helsingfors den 4--7 Juli 1922, Den femte skandinaviska matematikerkongressen, Redog\"o{}relse: 217--232 \end{itemize} English translation \begin{itemize}% \item \emph{Some remarks on axiomatized set theory} in \emph{From Frege to G\"o{}del: A Source Book in Mathematical Logic, 1879-1931}, Cambridge, Massachusetts: Harvard University Press \end{itemize} [[!redirects Einige Bemerkungen zu axiomatischen Begründung der Mengenlehre]] category: reference \end{document}