\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sp(n).Sp(1)} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_the_effective_quotient_of__acting_on_}{As the effective quotient of $Sp(n)\times Sp(1)$ acting on $\mathbb{H}^n$}\dotfill \pageref*{as_the_effective_quotient_of__acting_on_} \linebreak \noindent\hyperlink{lift_to_}{Lift to $Sp(n) \times Sp(1)$}\dotfill \pageref*{lift_to_} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SO4}{$Sp(1)\cdot Sp(1)$ is $SO(4)$}\dotfill \pageref*{SO4} \linebreak \noindent\hyperlink{Spinc}{$Spin(n)\cdot Spin(2)$ is $Spin^c(n)$}\dotfill \pageref*{Spinc} \linebreak \noindent\hyperlink{Triality}{Triality}\dotfill \pageref*{Triality} \linebreak \noindent\hyperlink{Sp1Sp1Sp1}{$Sp(1)Sp(1)Sp(1) = Spin(4)\cdot Spin(3)$}\dotfill \pageref*{Sp1Sp1Sp1} \linebreak \noindent\hyperlink{SpinGrassmannians}{Spin-Grassmannians}\dotfill \pageref*{SpinGrassmannians} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{_2}{$Sp(n)\cdot Sp(1)$}\dotfill \pageref*{_2} \linebreak \noindent\hyperlink{ReferencesSp2Sp1}{$Sp(2)\cdot Sp(1)$}\dotfill \pageref*{ReferencesSp2Sp1} \linebreak \noindent\hyperlink{_4}{$Spin(n_1)\cdot Spin(n_2)$}\dotfill \pageref*{_4} \linebreak \noindent\hyperlink{ReferencesSpin4Spin3}{$Sp(1)Sp(1)Sp(1) \simeq Spin(4)\cdot Spin(3)$}\dotfill \pageref*{ReferencesSpin4Spin3} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Lie group]] denoted $Sp(n).Sp(1)$ (\hyperlink{Alekseevskii68}{Alekseevskii 68}, \hyperlink{Gray69}{Gray 69}) or just $Sp(n)Sp(1)$ is the [[quotient group]] of the [[direct product group]] of the given [[quaternion unitary groups]] by their [[diagonal]] [[center]] [[cyclic group of order 2]]. A [[smooth manifold]] of [[dimension]] $4n$ with [[G-structure]] for this group $G = Sp(n).Sp(1)$ is a [[quaternion-Kähler manifold]]. Similarly, for $Spin(n_1)$, $Spin(n_2)$ [[spin groups]] in some dimension, the group denoted $Spin(n_1) \cdot Spin(n_2)$ or just $Spin(n_1)Spin(n_2)$ is the [[quotient group]] of the [[direct product group]] $Spin(n_1) \times Spin(n_2)$ by the [[diagonal]] [[center]] [[cyclic group of order 2]]. These products $G_1 \cdot G_2$ are examples of [[central products of groups]]. $\backslash$linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SpnSp1}\hypertarget{SpnSp1}{} For $n \in \mathbb{N}$ with $n \geq 2$, the [[Lie group]] denoted $Sp(n).Sp(1)$ or just $Sp(n)Sp(1)$ is the [[quotient group]] of the [[direct product group]] $Sp(n) \times Sp(1)$ of [[quaternion unitary groups]] $Sp(n)$ (in particular $Sp(1) \simeq$ [[Spin(3)]]) by the [[diagonal]] [[center]] [[cyclic group of order 2]] $\mathbb{Z}_2$: \begin{displaymath} Sp(n).Sp(1) \;\coloneqq\; \big( Sp(n) \times Sp(1) \big)/_{diag}\mathbb{Z}_2 \end{displaymath} hence the [[quotient group]] by the [[subgroup]] \begin{equation} \mathbb{Z}_2 \;\simeq\; \big\{ (1,1), (-1,-1) \big\} \hookrightarrow Sp(n) \times Sp(1) \,. \label{DiagonalCenter}\end{equation} \end{defn} (e.g. \hyperlink{CadekVanzura97}{Čadek-Vanžura 97, Sec. 2}) A similar definition yields \begin{defn} \label{Spinn1Spinn2}\hypertarget{Spinn1Spinn2}{} Write \begin{displaymath} Spin(n_1) \cdot Spin(n_2) \;\coloneqq\; \big( Spin(n_1) \times Spin(n_2) \big)/\mathbb{Z}_2 \end{displaymath} for the [[quotient group]] of the [[direct product group]] of [[spin groups]] by their [[diagonal]] [[subgroup]] \begin{displaymath} \mathbb{Z}_2 \;\simeq\; \big\{ (1,1), (-1,-1) \big\} \;\hookrightarrow\; Spin(n_1) \times Spin(n_1) \,. \end{displaymath} \end{defn} (\hyperlink{McInnes99a}{McInnes 99a, p. 9}, \hyperlink{HilgertNeeb12}{Hilgert-Neeb 12, Prop. 17.3.1}) Sometimes one sees the notation further generalized to include cases such as \begin{itemize}% \item $Spin(n) \cdot U(1) \simeq Spin(n)\cdot Spin(2) \simeq$ [[Spin{\tt \symbol{94}}c]], \end{itemize} see Example \ref{SpinnSpin2IsSpinc} below. $\backslash$linebreak \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_the_effective_quotient_of__acting_on_}{}\subsubsection*{{As the effective quotient of $Sp(n)\times Sp(1)$ acting on $\mathbb{H}^n$}}\label{as_the_effective_quotient_of__acting_on_} The [[direct product group]] $Sp(n) \times Sp(1)$ has a canonical [[action]] on the [[quaternion]] [[vector space]] $\mathbb{H}^n$, where the factor [[Sp(n)]] acts as $2 \times 2$ [[quaternion unitary group|quaternion unitary]] [[matrix multiplication]] from the left, and $Sp(1)$ acts by [[diagonal]] $1 \times 1$ matrix action on each $\mathbb{H}$-summand from the right. For instance for $n = 2$ this action controls the [[quaternionic Hopf fibration]] and its $Sp(2)$ [[equivariant function|equivariance]] (see \href{quaternionic+Hopf+fibration#EquivariantStructure}{there}). But this action is not an [[effective group action]]: Precisely the diagonal center \eqref{DiagonalCenter} acts trivially. There is then a [[commuting diagram]] of [[Lie groups]] \begin{equation} \itexarray{ Sp(2) \times Sp(1) &\longrightarrow& Spin(8) \\ \big\downarrow && \big\downarrow \\ Sp(2) \cdot Sp(1) &\longrightarrow& SO(8) } \label{CompatibilityDiagram}\end{equation} with the horizontal maps being [[group homomorphisms]] to [[Spin(8)]] and [[SO(8)]], respectively, the left morphism being the defining [[quotient]] projection and the right morphism the [[double cover]] morphism that defines the [[spin group]]. (e.g. \hyperlink{CadekVanzura97}{Čadek-Vanžura 97, p. 4}) \hypertarget{lift_to_}{}\subsubsection*{{Lift to $Sp(n) \times Sp(1)$}}\label{lift_to_} (\hyperlink{MarchiafavaRomani76}{Marchiafava-Romani 76}, \hyperlink{Salamon82}{Salamon 82, around Def. 2.1}) (\ldots{}) $\backslash$linebreak \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{SO4}{}\subsubsection*{{$Sp(1)\cdot Sp(1)$ is $SO(4)$}}\label{SO4} The case of $Sp(n)\cdot Sp(1)$ for $n = 1$ is special, as in this case the canonical inclusion $Sp(n)\cdot Sp(1) \hookrightarrow SO(4n)$ becomes an [[isomorphism]] \begin{displaymath} Sp(1)\cdot Sp(1) \;\simeq\; SO(4) \end{displaymath} with the [[special orthogonal group]] [[SO(4)]], and hence the compatibility diagram \eqref{CompatibilityDiagram} now exhibits at the top the [[exceptional isomorphism]] $Sp(1) \times Sp(1) \simeq$ [[Spin(4)]] (see \href{Spin4#ExceptionalIsomorphisms}{there}) In summary: \begin{prop} \label{}\hypertarget{}{} There is a [[commuting diagram]] of [[Lie groups]] of the form \begin{displaymath} \itexarray{ ( q_1, q_2 ) &\mapsto& (x \mapsto q_1 \cdot x \cdot \overline{q}_2) \\ Sp(1) \times Sp(1) &\overset{\simeq}{\longrightarrow}& Spin(4) \\ \big\downarrow && \big\downarrow \\ Sp(1)\cdot Sp(1) &\overset{\simeq}{\longrightarrow}& SO(4) } \end{displaymath} where \begin{enumerate}% \item in the top left we have [[Sp(1)]] = [[Spin(3)]], \item in the top right we have [[Spin(4)]], \item in the bottom left we have [[Sp(n).Sp(1)|Sp(1).Sp(1)]] \item in the bottom right we have [[SO(4)]] \item the horizontal morphism assigns the [[conjugation action]] of unit [[quaternions]], as indicated, \item the right vertical morphism is the defining [[double cover]], \item the left vertical morphism is the defining [[quotient group]]-projection. \end{enumerate} \end{prop} $\backslash$linebreak \hypertarget{Spinc}{}\subsubsection*{{$Spin(n)\cdot Spin(2)$ is $Spin^c(n)$}}\label{Spinc} \begin{example} \label{SpinnSpin2IsSpinc}\hypertarget{SpinnSpin2IsSpinc}{} For $n \in \mathbb{N}$, group $Sp(n) \cdot Sp(2)$ in Def. \ref{Spinn1Spinn2} is the group otherwise known as [[spin{\tt \symbol{94}}c|spin{\tt \symbol{94}}c(n)]]: \begin{displaymath} Spin(n)\cdot Spin(2) \;\simeq\; Spin^c(n) \,. \end{displaymath} This is due to the identification of the [[double cover]] by [[Spin(2)]] of [[SO(2)]] with the [[real Hopf fibration]] (\href{Spin2#Spin2OverSO2IsRealHopfFibration}{this Prop}), which identifies $Spin(2) \simeq U(1)$ compatible with the subgroupinclusion of $\mathbb{Z}_2$. \end{example} (See also e.g. \hyperlink{Gompf97}{Gompf 97, p. 2}) \hypertarget{Triality}{}\subsubsection*{{Triality}}\label{Triality} \begin{prop} \label{Spin3DotSpin5SubgroupsInSO8}\hypertarget{Spin3DotSpin5SubgroupsInSO8}{} \textbf{([[Spin(5).Spin(3)]]-[[subgroups]] in [[SO(8)]])} The [[direct product group]] [[SO(3)]] $\times$ [[SO(5)]] together with the groups [[Sp(2).Sp(1)]] and $Sp(1) \cdot Sp(2)$, with their canonical inclusions into [[SO(8)]], form 3 [[conjugacy classes of subgroups|conjugacy classes]] of [[subgroups]] inside [[SO(8)]], and the [[triality]] group $Out(Spin(8))$ [[action|acts]] [[transitive action|transitively]] on these three classes. $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} Sp(2)$\backslash$cdot Sp(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}dr{\tt \symbol{94}}\{$\backslash$iota'\} $\backslash$ \& SO(8) \& SO(3) $\backslash$times SO(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}l{\tt \symbol{94}}-\{$\backslash$iota\} $\backslash$ Sp(1) $\backslash$cdot Sp(2) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}ur\emph{-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{Kollross02}{Kollross 02, Prop. 3.3 (3)}) Similarly: \begin{prop} \label{Spin3DotSpin5SubgroupsInSpin8}\hypertarget{Spin3DotSpin5SubgroupsInSpin8}{} \textbf{([[Spin(5).Spin(3)]]-[[subgroups]] in [[Spin(8)]])} The groups [[Spin(5).Spin(3)]], [[Sp(2).Sp(1)]] and $Sp(1) \cdot Sp(2)$, with their canonical inclusions into [[Spin(8)]], form 3 [[conjugacy classes of subgroups|conjugacy classes]] of [[subgroups]] inside [[Spin(8)]], and the [[triality]] group $Out(Spin(8))$ [[action|acts]] [[transitive action|transitively]] on these three classes. $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} Sp(2)$\backslash$cdot Sp(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}dr{\tt \symbol{94}}\{$\backslash$iota'\} $\backslash$ \& Spin(8) \& Spin(3) $\backslash$cdot Spin(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}l{\tt \symbol{94}}-\{$\backslash$iota\} $\backslash$ Sp(1) $\backslash$cdot Sp(2) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}ur\emph{-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} $\backslash$end\{center\}} \end{prop} (\hyperlink{CadekVanzura97}{Čadek-Vanžura 97, Sec. 2}) In summary: $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Sp\}(1) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(2) $\backslash$ar@\{=\}dddddr $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ddrr|-\{ $\backslash$iota' \} $\backslash$ $\backslash$ \&\& $\backslash$mathrm\{Spin\}(8) $\backslash$ar@\{-\guillemotright{}\}dddddr \&\& $\backslash$mathrm\{Spin\}(3) \{$\backslash$cdot\} $\backslash$mathrm\{Spin\}(5) $\backslash$ar@\{-\guillemotright{}\}dddddr $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ll|-\{$\backslash$iota\} $\backslash$ $\backslash$ $\backslash$mathrm\{Sp\}(2) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(1) $\backslash$ar@\{=\}dddddr $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}uurr |\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\guillemotleft{}\{ $\backslash$phantom\{AA $\backslash$atop AA\} \} |\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}\guillemotright{}{\tt \symbol{62}}\{ $\backslash$iota'` \} $\backslash$ \& $\backslash$mathrm\{Sp\}(1) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(2) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ddrr|-\{ $\backslash$iota' \} $\backslash$ $\backslash$ \&\&\& $\backslash$mathrm\{SO\}(8) \&\& $\backslash$mathrm\{SO\}(3) $\backslash$times $\backslash$mathrm\{SO\}(5) $\backslash$ar@\{\_\{(\}-{\tt \symbol{62}}\}ll|-\{$\backslash$iota\} $\backslash$ $\backslash$ \& $\backslash$mathrm\{Sp\}(2) \{$\backslash$cdot\} $\backslash$mathrm\{Sp\}(1) $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}uurr|-\{ $\backslash$iota'` \} $\backslash$end\{xymatrix\} \hypertarget{Sp1Sp1Sp1}{}\subsubsection*{{$Sp(1)Sp(1)Sp(1) = Spin(4)\cdot Spin(3)$}}\label{Sp1Sp1Sp1} \begin{example} \label{Spin4Spin3}\hypertarget{Spin4Spin3}{} \textbf{([[Spin(4).Spin(3)]])} The group \begin{displaymath} Spin(4)\cdot Spin(3) \;\coloneqq\; \big( Spin(4) \times Spin(3) \big)/\mathbb{Z}_2 \end{displaymath} is the [[quotient group]] of the [[direct product group]] of [[Spin(4)]] with [[Spin(3)]] by the [[subgroup]] \begin{equation} \mathbb{Z}_2 \;\simeq\; \big\{ (1,1), (-1,-1) \big\} \hookrightarrow Spin(4) \times Spin(3) \,. \label{Spin4Spin3DiagonalCenter}\end{equation} Due to the exception [[isomorphism]] [[Spin(4)]] $\simeq$ [[Spin(3)]] $\times$ [[Spin(3)]] (\href{Spin4#ExceptionalIsoWithSpin3TimesSpin3}{this Prop.}) this is [[isomorphism|isomorphic]] to the [[quotient group]] of the [[direct product group|direct product]] of 3 copies of [[Sp(1)]] $\simeq$ [[Spin(3)]] with itself \begin{displaymath} Spin(4)\cdot Spin(3) \;\simeq\; Sp(1)Sp(1)Sp(1) \;\coloneqq\; \big( Spin(3) \times Spin(3) \times Spin(3)\big)/_{diag} \mathbb{Z}_2 \end{displaymath} by the triple diagonal center \begin{equation} \mathbb{Z}_2 \;\simeq\; \big\{ (1,1,1), (-1,-1,-1) \big\} \hookrightarrow Spin(3) \times Spin(3) \times Spin(3) \,. \label{Spin3Spin3Spin3DiagonalCenter}\end{equation} \end{example} See the references \hyperlink{ReferencesSpin4Spin3}{below}. \begin{example} \label{}\hypertarget{}{} The [[coset space]] of [[Sp(2).Sp(1)]] (Def. \ref{SpnSp1}) by [[Sp(1)Sp(1)Sp(1)]] (Def. \ref{Spin4Spin3}) is the [[4-sphere]]: \begin{displaymath} \frac{ Sp(2)\cdot Sp(1) } { Sp(1)Sp(1)Sp(1) } \;\simeq\; S^4 \,. \end{displaymath} This follows essentially from the [[quaternionic Hopf fibration]] and its $Sp(2)$-[[equivariant function|equivariance]]\ldots{} \end{example} (e.g. \hyperlink{BettiolMendes15}{Bettiol-Mendes 15, (3.1), (3.2), (3.3)}) \hypertarget{SpinGrassmannians}{}\subsubsection*{{Spin-Grassmannians}}\label{SpinGrassmannians} We have the following [[coset spaces]] of [[spin groups]] by dot-products of Spin groups as above: \begin{displaymath} Spin(7)/ \big( Spin(4)\cdot Spin(3) \big) \;\simeq\; SO(7) / \big( SO(4) \times SO(3) \big) \;\simeq\; Gr(4, 7) \end{displaymath} is the space of [[Cayley 4-planes]] ([[Cayley 4-form]]-[[calibrated submanifolds]] in 8d [[Euclidean space]]). This happens to also be [[homeomorphism|homeomorphic]] to just the plain [[Grassmannian]] of 4-planes in 7d (recalled e.g. in \hyperlink{OrneaPiccini00}{Ornea-Piccini 00, p. 1}). Similarly, \begin{displaymath} Spin(6)/ \big( Spin(3)\cdot Spin(3) \big) \;\simeq\; SU(6)/ SO(4) \end{displaymath} is the Grassmannian of those [[Cayley 4-planes]] that are also [[special Lagrangian submanifolds]] (\href{Cayley+form#BBMOOY96}{BBMOOY 96, p. 7 (8 of 17)}). Moreover, \begin{displaymath} Spin(8)/ \big( Spin(5)\cdot Spin(3) \big) \;\simeq\; Gr(3, 8) \end{displaymath} is the [[Grassmannian]] of 3-planes in 8d. (\hyperlink{CadekVanzura97}{Cadek-Vanzura 97, Lemma 2.6}). $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include low dimensional rotation groups -- table]] \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{_2}{}\subsubsection*{{$Sp(n)\cdot Sp(1)$}}\label{_2} Very early appearances of the notation $Sp(n)\cdot Sp(1)$ are mostly in discussions of [[Berger's theorem]] for exceptional [[holonomy]]: \begin{itemize}% \item [[Alfred Gray]], \href{https://projecteuclid.org/euclid.mmj/1029000212}{\emph{A Note on Manifolds Whose Holonomy Group is a Subgroup of Sp(n) $\cdot$ Sp(1)}}, Michigan Math. J. Volume 16, Issue 2 (1969), 125-128. \item [[Dmitri Alekseevskii]], \href{https://link.springer.com/article/10.1007%2FBF01075943}{\emph{Riemannian spaces with exceptional holonomy groups}}, Functional Analalysis and its Applications (1968) 2: 97. \end{itemize} However, the even earlier paper: \begin{itemize}% \item Joseph Wolff, \emph{Complex homogeneous contact manifolds and quaternionic symmetric spaces}, Journal of Mathematics and Mechanics, vol. 14 (1965), pp. 1033-1048. \end{itemize} describes this construction as a ``local [[direct product]]'' of [[topological groups]] and applies it to the classification of [[quaternionic manifolds]]. The notation in the classical paper of \hyperlink{}{Bonan} for this group is $V_{4n} [Sp(n) \otimes_\mathbf{H} Sp(1)]$. Of early algebraic interest is the structure theory article: \begin{itemize}% \item Stefano Marchiafava, Giuliano Romani, \emph{Sul classificante del gruppo $Sp(n) \cdot Sp(1)$}, Annali di Matematica Pura ed Applicata December 1976, Volume 110, Issue 1, pp 295–319 (\href{https://doi.org/10.1007/BF02418010}{doi:10.1007/BF02418010}) \end{itemize} More on the [[cohomology]] of $Sp(n)\cdot Sp(1)$ and its [[classifying space]]: \begin{itemize}% \item Stefano Marchiafava, Giuliano Romani, \emph{Alcune osservazioni sui sottogruppi abeliani del gruppo $Sp(n)\cdot Sp(1)$}, Annali di Matematica 1977 (\href{https://doi.org/10.1007/BF02413792}{doi:10.1007/BF02413792}) \item [[Paolo Piccinni]], Giuliano Romani, \emph{A generalization of symplectic Pontrjagin classes to vector bundles with structure group $Sp(n)\cdot Sp(1)$}, Annali di Matematica pura ed applicata (1983) 133: 1 (\href{https://doi.org/10.1007/BF01766008}{doi:10.1007/BF01766008}) \item [[Paolo Piccinni]], \emph{Vector fields and characteristic numbers on hyperkàhler and quaternion Kâhler manifolds}, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992) Volume: 3, Issue: 4, page 295-298 (\href{https://eudml.org/doc/244204}{dml:244204}) \item [[Dmitri Alekseevskii]] S. Marchiafava, \emph{Quaternionic structures on a manifold and subordinated structures}, Annali di Matematica pura ed applicata (1996) 171: 205 (\href{https://doi.org/10.1007/BF01759388}{doi:10.1007/BF01759388}) \end{itemize} Discussion of the lift to $Sp(n) \times Sp(1)$ appears in \begin{itemize}% \item S. Marchiafava, G. Romani, \emph{Sui fibrati con struttura quaternionale generalizzata}, Ann. Mat. Pura Appl. (IV) CVII, 131-157 (1976) (\href{https://doi.org/10.1007/BF02416470}{doi:10.1007/BF02416470}) \item [[Simon Salamon]], around Def. 2.1 in \emph{Quaternionic Kähler manifolds}, Invent Math (1982) 67: 143. (\href{https://doi.org/10.1007/BF01393378}{doi:10.1007/BF01393378}) \end{itemize} \hypertarget{ReferencesSp2Sp1}{}\subsubsection*{{$Sp(2)\cdot Sp(1)$}}\label{ReferencesSp2Sp1} Articles dealing specifically with the group $Sp(2)\cdot Sp(1)$: \begin{itemize}% \item [[Martin Čadek]], [[Jiří Vanžura]], Section 2 of \emph{On $Sp(2)$ and $Sp(2) \cdot Sp(1)$-structures in 8-dimensional vector bundles}, Publicacions Matemàtiques Vol. 41, No. 2 (1997), pp. 383-401 (\href{https://www.jstor.org/stable/43737249}{jstor:43737249}) \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{Almost quaternionic structures on eight-manifolds}, Osaka J. Math. Volume 35, Number 1 (1998), 165-190 (\href{https://projecteuclid.org/euclid.ojm/1200787905}{euclid:1200787905}) \item Andreas Kollross, Prop. 3.3 of \emph{A Classification of Hyperpolar and Cohomogeneity One Actions}, Transactions of the American Mathematical Society Vol. 354, No. 2 (Feb., 2002), pp. 571-612 (\href{https://www.jstor.org/stable/2693761}{jstor:2693761}) \end{itemize} See also the references at \emph{[[quaternion-Kähler manifold]]}. \hypertarget{_4}{}\subsubsection*{{$Spin(n_1)\cdot Spin(n_2)$}}\label{_4} A textbook occurrence of dot notation for general spin groups, $Spin(n_1)\cdot Spin(n_2)$, appears in \begin{itemize}% \item Joachim Hilgert, [[Karl-Hermann Neeb]], Prop. 17.3.1 \emph{Structure and Geometry of Lie Groups}, Springer Monographs in Mathematics, Springer-Verlag New York, 2012 (\href{https://link.springer.com/book/10.1007/978-0-387-84794-8}{doi:10.1007/978-0-387-84794-8}) \end{itemize} The identification of $Spin \dot Spin(2)$ with [[Spin{\tt \symbol{94}}c]] appears for instance in \begin{itemize}% \item [[Robert Gompf]], \emph{$Spin^c$ structures and homotopy equivalences}, Geom. Topol. 1 (1997) 41-50 (\href{https://arxiv.org/abs/math/9705218}{arXiv:math/9705218}) \end{itemize} Discussion of central product spin groups as [[subgroups]] of [[semi-spin groups]] (motivated by analysis of the [[gauge groups]] and [[Green-Schwarz anomaly cancellation]] of [[heterotic string theory]]) is in \begin{itemize}% \item [[Brett McInnes]], p. 9 of \emph{The Semispin Groups in String Theory}, J. Math. Phys. 40:4699-4712, 1999 (\href{https://arxiv.org/abs/hep-th/9906059}{arXiv:hep-th/9906059}) \item [[Brett McInnes]], \emph{Gauge Spinors and String Duality}, Nucl. Phys. B577:439-460, 2000 (\href{https://arxiv.org/abs/hep-th/9910100}{arXiv:hep-th/9910100}) \end{itemize} As such these also appear as [[U-duality groups]] and their [[subgroups]], e.g. \begin{itemize}% \item [[Arjan Keurentjes]], p. 10 of \emph{The topology of U-duality (sub-)groups}, Class.Quant.Grav. 21 (2004) 1695-1708 (\href{https://arxiv.org/abs/hep-th/0309106}{arXiv:hep-th/0309106}) \end{itemize} \hypertarget{ReferencesSpin4Spin3}{}\subsubsection*{{$Sp(1)Sp(1)Sp(1) \simeq Spin(4)\cdot Spin(3)$}}\label{ReferencesSpin4Spin3} The group $Spin(4)\cdot Spin(3) \simeq (Spin(3))^3/_{diag} \mathbb{Z}_2$ (Example \ref{Spin4Spin3}) is discussed in the following, largely in describing the Grassmannian of [[Cayley 4-planes]], see \href{Cayley+form#GrassmannianOfCayley4Planes}{there}: \begin{itemize}% \item Wu-Chung Hsiang, Wu-Yi Hsiang, Tables A of \emph{Differentiable Actions of Compact Connected Classical Groups: II}, Annals of Mathematics Second Series, Vol. 92, No. 2 (1970), pp. 189-223 (\href{https://www.jstor.org/stable/1970834}{jstor:1970834}) \item [[Reese Harvey]], [[H. Blaine Lawson]], theorem 1.38 of \emph{Calibrated geometries}, Acta Math. Volume 148 (1982), 47-157 (\href{https://projecteuclid.org/euclid.acta/1485890157}{Euclid:1485890157}) \item [[Robert Bryant]], [[Reese Harvey]], (3.19) in \emph{Submanifolds in Hyper-Kähler Geometry}, Journal of the American Mathematical Society Vol. 2, No. 1 (Jan., 1989), pp. 1-31 (\href{https://www.jstor.org/stable/1990911}{jstor:1990911}) \item Herman Gluck, Dana Mackenzie, Frank Morgan, (5.20) in \emph{Volume-minimizing cycles in Grassmann manifolds}, Duke Math. J. Volume 79, Number 2 (1995), 335-404 (\href{https://projecteuclid.org/euclid.dmj/1077285156}{euclid:1077285156}) \item Megan M. Kerr, Lemma 6.2 of \emph{Some New Homogeneous Einstein Metrics on Symmetric Spaces}, Transactions of the American Mathematical Society, Vol. 348, No. 1 (1996), pp. 153-171 (\href{https://www.jstor.org/stable/2155169}{jstor:2155169}) \item [[Katrin Becker]], [[Melanie Becker]], [[David Morrison]], [[Hirosi Ooguri]], Y. Oz, Z. Yin, (3.5) of \emph{Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds}, Nucl. Phys. B480:225-238, 1996 (\href{https://arxiv.org/abs/hep-th/9608116}{arXiv:hep-th/9608116}) \item [[Victor Kac]], A.V. Smilga, around (1.10) in \emph{Vacuum structure in supersymmetric Yang-Mills theories with any gauge group}, in \emph{[[The Many Faces of the Superworld]], pp. 185-234 World Scientific (2000)} (\href{https://arxiv.org/abs/hep-th/9902029}{arXiv:hep-th/9902029}, \href{https://doi.org/10.1142/9789812793850_0014}{doi:10.1142/9789812793850\_0014}) \item Liviu Ornea, [[Paolo Piccinni]], \emph{Cayley 4-frames and a quaternion-Kähler reduction related to Spin(7)}, Proceedings of the International Congress of Differential Geometry in the memory of A. Gray, held in Bilbao, Sept. 2000 (\href{https://arxiv.org/abs/math/0106116}{arXiv:math/0106116}) \item Karsten Grove, Burkhard Wilking, Wolfgang Ziller, p. 30 of \emph{Positively Curved Cohomogeneity One Manifolds and 3-Sasakian Geometry} (\href{https://arxiv.org/abs/math/0511464}{arXiv:math/0511464}) \item Renato G. Bettiol, Ricardo A. E. Mendes, \emph{Flag manifolds with strongly positive curvature}, Math. Z. 280 (2015), no. 3-4, 1031-1046 (\href{https://arxiv.org/abs/1412.0039}{arXiv:1412.0039}) \item Maurizio Parton, Paolo Piccinni, Victor Vuletescu, Prop. 2.2 in \emph{Clifford systems in octonionic geometry} (\href{https://arxiv.org/abs/1511.06239}{arXiv:1511.06239}) \end{itemize} Discussion of $Sp(1)\cdot Sp(1) \cdot Sp(1)$ in the context of [[super Lie algebras]] and [[superconformal geometry|superconformal symmetry]] is in: \begin{itemize}% \item [[Peter Freund]], p. 634 of \emph{World topology and gauged internal symmetries}, Proc. 19th Int. Conf. High Energy Physics, Tokyo 1978 (\href{http://inspirehep.net/record/137780/}{spire:137780}, \href{https://cds.cern.ch/record/870701/files/c78-08-23-p617.pdf}{pdf}) \end{itemize} and possibly with the $\mathbb{Z}_2$-quotient not made explicit: \begin{itemize}% \item [[Peter Goddard]] (auth.), [[Peter Freund]], K. T. Mahanthappa, p. 128 of \emph{Superstrings}, NATO ASI Series 175, Springer 1988 \item Kazuo Hosomichi, Sangmin Lee, Sungjay Lee, Jaemo Park, slide 13 of \emph{New Superconformal Chern-Simons Theories} (\href{http://www3.ic.ac.uk/pls/portallive/docs/1/46083696.PDF}{pdf}) \end{itemize} [[!redirects Sp(2).Sp(1)]] [[!redirects Spin(5).Spin(3)]] [[!redirects Spn.Sp1]] [[!redirects SpnSp1]] [[!redirects Sp(1)Sp(1)Sp(1)]] [[!redirects Sp(1).Sp(1).Sp(1)]] [[!redirects central product spin group]] [[!redirects central product spin groups]] [[!redirects Spin(n).Spin(m)]] [[!redirects Spin(n1).Spin(n2)]] [[!redirects Spin(3)Spin(3)Spin(3)]] [[!redirects Spin(3).Spin(3).Spin(3)]] [[!redirects Spin(4).Spin(3)]] \end{document}